Browse > Article
http://dx.doi.org/10.4014/jmb.1105.05034

Mannitol Production by Leuconostoc citreum KACC 91348P Isolated from Kimchi  

Otgonbayar, Gan-Erdene (Department of Food Science and Technology, Chungbuk National University)
Eom, Hyun-Ju (Department of Food Science and Technology, Chungbuk National University)
Kim, Beom-Soo (Department of Chemical Engineering, Chungbuk National University)
Ko, Jae-Hyung (Department of Biotechnology and Food Science, Mongolia International University)
Han, Nam-Soo (Department of Food Science and Technology, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.9, 2011 , pp. 968-971 More about this Journal
Abstract
Leuconostoc genus, which comprise heterofermentative lactic acid bacteria, reduces fructose to mannitol by recycling intracellular NADH. To evaluate the mannitol productivities of different Leuconostoc species, 5 stock cultures and 4 newly isolated strains were cultivated in MRS and simplified media containing glucose and fructose (1:2 ratio). Among them, L. citreum KACC 91348P, which was isolated from kimchi, showed superior result in cell growth rate, mannitol production rate, and yield in both media. The optimal condition for mannitol production of this strain was pH 6.5 and $30^{\circ}C$. When L. citreum KACC was cultured in simplified medium in a 2 l batch fermenter under optimal conditions, the maximum volumetric productivity was 14.83 $g{\cdot}l^{-1}h^{-1}$ and overall yield was 86.6%. This strain is a novel and efficient mannitol producer originated from foods to be used for fermentation of fructose-containing foods.
Keywords
D-Mannitol; Leuconostoc species; volumetric mannitol productivity; yield mol%;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Aarnikunnas J., K. Ronnholm, and A. Palva. 2002. The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes. Appl. Microbiol. Biotechnol. 59: 665-667.   DOI   ScienceOn
2 Carvalheiro, F., P. Moniz, L. C. Duarte, M. P. Esteves, and F. M. Grio. 2011. Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J. Ind. Microbiol. Biotechnol. 38: 221-227.   DOI   ScienceOn
3 Choi, I. K., S. H. Jung, B. J. Kim, S. Y. Park, J. Kim, and H. U. Han. 2006. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie Van Leeuwenhoek 84: 247-253.
4 von Weymarn, N., M. Hujanen, and M. Leisola. 2002. Production of $_D-mannitol$ by heterofermentative lactic acid bacteria. Proc. Biochem. 37: 1207-1213.   DOI   ScienceOn
5 Chung, C. H. and D. F. Day. 2002. Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic. J. Ind. Microbiol. Biotechnol. 29: 196-199.   DOI   ScienceOn
6 Wisselink, H. W., R. A. Weusthuisa, G. Egginka, J. Hugenholtza, and G. J. Grobben. 2002. Mannitol production by lactic acid bacteria: A review. Int. Dairy J. 12: 151-161.   DOI   ScienceOn
7 Yun, J. W and D. H. Kim. 1998. A comparative study of mannitol production by two lactic acid bacteria. J. Ferment. Bioeng. 85: 203-208.   DOI   ScienceOn
8 von Weymarn, N., J. Kristiina, K. J. Kiviharju, S. T. Jaaskelainen, and M. S. Leisola. 2003. Scale-up of a new bacterial mannitol production process. Biotechnol. Prog. 19: 815-821.   DOI   ScienceOn
9 von Weymarn, N., K. Kiviharju, and M. Leisola. 2002. High-level production of $_D-mannitol$ with membrane cell-recycle bioreactor. J. Ind. Microbiol. Biotechnol. 29: 44-49.   DOI   ScienceOn
10 von Weymarn, N. 2002. Process development for mannitol production by lactic acid bacteria. PhD Thesis. Helsinki University of Technology, Finland.
11 Ghoreishi, S. M. and Gholami Shahrestani. 2009. Review on engineering mannitol production. Trends Food Sci. Tech. 20: 263-270.   DOI   ScienceOn
12 Helanto, M., J. Aarnikunnas, N. von Weymarn, U. Airaksinen, A. Palva, and M. Leisola. 2005. Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides. J. Biotechnol. 116: 282-294.
13 Kim., Y. S., Y. S. Kim, S. Y. Kim, J. H. Whang, and H. J. Suh. 2008. Application of omija (Schiandra chinensis) and plum (Prunus mume) extracts for the improvement of kimchi quality. Food Control 19: 662-669.   DOI   ScienceOn
14 Hemme, D. and C. Foucaud-Scheunemann. 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467-494.   DOI   ScienceOn
15 Soetaert, W. 1990. Production of mannitol with Leuconostoc mesenteroides. Med. Fac. Landbouwwet Rijksuniv. Gent. 55: 1549-1552.
16 Soetaert, W., K. Buchholz, and E. J. Vandamme. 1995. Production of $_D-mannitol$ and $_D-lactic$ acid by fermentation with Leuconostoc mesenteroides. Agro. Food Ind. HiTech. 6: 41-44.
17 Olvera, C., S. Centano-Leija, and A. Lopez-Munguia. 2006. Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC8293. Antonie Van Leeuwenhoek 92: 11-20.
18 Patra, F., S. K. Tomar, Y. S. Rajput, and R. Singh. 2011. Characterization of mannitol producing strains species. World J. Microbiol. Biotechnol. 27: 933-939.   DOI   ScienceOn
19 Saha, B. C and F. M. Racine. 2010. Biotechnological production of mannitol and its application. Appl. Microbiol. Biotechnol. 86: 1003-1015.   DOI   ScienceOn
20 Itoh, Y., A. Tanakara, H. Araya, K. Ogasawara, H. Inabi, Y. Sakamoto, and J. Koga. 1992. Lactobacillus B001 for the manufacture of mannitol, acetic acid, lactic acid. European patent EP 486024.
21 Monchois, V., M. Remaud-Simeon, R. R. B. Russell, P. Monsan, and R. M. Willemot. 1997. Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino acid residues playing a key role in enzyme activity. Appl. Microbiol. Biotechnol. 48: 465-472.   DOI   ScienceOn