• 제목/요약/키워드: overall heat transfer

검색결과 426건 처리시간 0.023초

진동세관형 히트파이프를 이용한 태양열 집열기 개발에 관한 기초연구(I);작동유체의 내부 충진율과 경사각도의 영향 (Study on development of Solar Collector using Oscillating Capillary Tube Heat Pipe)

  • 김태훈;김종수;하수정;임용빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1394-1399
    • /
    • 2004
  • Recently solar energy is representative in the technology development and spread of alternative energy. Specially in condition of solar collectors, they have had very various shape. This paper reports experimental study about the application of Oscillating Capillary Tube Heat Pipe to flat-plate solar collector. In conclusion, overall temperature distribution of OCHP was investigated by charging ratio and inclination angle. Respective charging ratio is 15%, 20%, 40% and respective inclination angle is horizontal, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, perpendicular. As a result of experiment, charging ratio 20% heat pipe has shown the most uniform temperature distribution and also performance of heat transfer has been the best.

  • PDF

조합형 윅을 사용한 히트파이프의 작동특성에 관한 실험적 연구 (Experimental study on the working characteristic of a heat pipe with combined wick)

  • 홍진관;부준홍;정원복
    • 설비공학논문집
    • /
    • 제11권2호
    • /
    • pp.236-243
    • /
    • 1999
  • Aluminum/Freon-22 heat pipes were manufactured and tested which have a special wick geometry combining axial groove and screen mesh. There were 14 axial grooves in a cross-section and these were covered by two layers of 350 mesh screens to enhance the thermal performance. The performance test was conducted by varying the thermal load and tilt angle. Furthermore, the operation limits and overall heat transfer coefficient were investigated. The experimental results will be useful in a variety of applications, especially in design and manufacturing of a high-efficiency heat exchanger and energy recovery systems.

  • PDF

다관원통형 열교환기의 파울링 해석기법 개발 연구 (A Study on the Development of Fouling Analysis Technique for Shell-and-Tube Heat Exchangers)

  • 황경모;진태은
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.167-173
    • /
    • 2004
  • Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the fouling analysis technique developed in this study which can analyze the thermal performance for heat exchangers and estimate the future fouling variations. To develop the fouling analysis technique fur heat exchangers, fouling factor was introduced based on the ASME O&M codes and TEMA standards. For the purpose or verifying the fouling analysis technique, the routing analyses were performed for four heat exchangers in several nuclear power plants; two residual heat removal heat exchangers of the residual heat removal system and two component cooling water heat exchangers of the component cooling water system.

화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석 (A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant)

  • 정진희;임석연;김범주;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

가정용 냉장고의 에너지 노즈부 열전달 특성에 관한 연구 (A Study on the Heat Transfer Performance of an Energy-Nose Section in a Household Refrigerator-Freezer)

  • 이무연;이동연;김용찬
    • 대한기계학회논문집B
    • /
    • 제31권6호
    • /
    • pp.574-580
    • /
    • 2007
  • The objective of this article is to present an analysis of all heat transfer paths through the energy nose under closed door conditions when refrigeration system of household refrigerator-freezer is operating on. Both experimental and numerical methods are suggested as a means of determining the overall energy nose load amount as well as the load due to each pathway such as mullion section and F and R sides of the household refrigerator-freezer. In other words, all loads determined in this article are just energy nose and not the loads seen by the refrigeration system. We suggest good ideas for improving the heat transfer losses such as conduction and convection through the energy nose. As we can be known from the experimental test results, it is effective to prevent the heat loss of a mullion section. And energy efficiency is also decreased approximately 6% compared to that of a baseline sample test result. As we can be known from the Ansys 8.1 analysis, it is shown the steady state temperature distribution in figures from 6 to 8. And the direction of the heat flow through the energy nose section is also easily seen from that In conclusion, the article is focused on an energy nose section in household refrigerator-freezer for practical proposes which is the energy saving in a household refrigerator-freezer. And the method suggested may be applied to any make or model to aid in the search for high efficient energy nose section of household side by side refrigerator-freezer as well as top mounted refrigerator-freezer, commercial refrigerator and so on.

가스터빈 노즐 베인의 열전달 예측을 위한 벽면처리법 비교연구 (Comparative Study of Near-Wall Treatment Methods for Prediction of Heat Transfer over Gas Turbine Nozzle Guide Vane)

  • 박정규;김진욱;이세욱;강영석;조이상;조진수
    • 대한기계학회논문집B
    • /
    • 제38권7호
    • /
    • pp.639-646
    • /
    • 2014
  • 난류모델에서 벽면처리법이 터빈 노즐 베인의 열전달 예측에 미치는 영향을 비교 분석하였다. 본 연구를 위해 NASA의 C3X 터빈 노즐 베인을 사용하였다. 벽함수 방법, 저레이놀즈수 방법, 천이모델을 사용하여 베인 표면에서의 압력 및 온도를 해석하였다. 해석 결과 터빈 노즐 베인의 중간 압력분포는 각 벽면처리법에 따른 차이 없이 실험값과 잘 일치하였다. 그러나 터빈 노즐 베인의 온도와 열전달 계수는 각 벽면처리법에 따라 큰 차이를 보였다. 전반적으로 저레이놀즈수 방법과 천이모델은 벽함수 방법에 비해 온도 및 열전달 계수 예측에 특별한 이점을 보이지 않았으며, 벽함수 방법을 적용한 레이놀즈응력 난류모델이 터빈 노즐 베인 표면의 온도 및 열전달 계수를 비교적 잘 예측하였다.

비정상과정에서 자동차 에어컨의 증발기 및 응축기의 컴퓨터 시뮬레이션 (Transient Computer Simulation of Evaporation and Condenser in an Automotive Air-Conditioning System)

  • 오상한;신동우;원성필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.19-24
    • /
    • 2000
  • The objective of this study is to develope a computer simulation model and estimate theoretically the transient performance characteristics of heat exchangers in an automotive air-conditioning system. To do that, the mathematical modelling of heat exchangers, such as evaporator and condenser, is presented first of all. For detail calculation, evaporator and condenser are divided into many sub-sections. Each sub-section is an elemental volume for transient modelling. The elemental volume is assumed to consist of three components, refrigerant, tube with fin, and air, and various properties including temperatures of three components are determined step along sub-sections. The properties of refrigerant R134a and air are calculated directly in the program. The heat transfer coefficients and pressure drop in single or two phase are also calculated by suitable empirical correlations. The overall tendencies of the simulation results were agreed well with those of actual situation.

  • PDF

일정 열 유속으로 냉각되는 안쪽 실린더를 갖는 수평 환형 공간에서의 공기의 자연 대류 (Natural Convection of Air in a Horizontal Annulus with the Inner Cylinder Cooled by Constant Heat Flux)

  • 유주식;엄용균;김용진
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.755-762
    • /
    • 2000
  • Natural convection of air in a horizontal annulus with the inner cylinder cooled by the application of a constant heat flux and the isothermally heated outer cylinder is considered. The bifurcation phenomenon of flow patterns and the heat transfer characteristics are numerically investigated. The zero initial condition induces a unicellular flow in a half annulus. A bicellular flow consisting of two counter-rotating eddies in a half annulus can be obtained above a certain critical Rayleigh number. A transition from the bicellular to the unicellular flow occurs with a decrease in Rayleigh number. Hysteresis phenomena have not been observed. In the regime of dual flows, the overall Nusselt number of the bicellular flow is greater than that of the unicellular flow.

  • PDF

경계요소법에 의한 터보과급 가솔린기관 실린더헤드에 대한 열전도 해석 (Heat Conduction Analysis of the Cylinder Head in Turbocharged Gasoline Engine by Boundary Element Method)

  • 최영돈;홍진관
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.739-752
    • /
    • 1989
  • 본 해석의 목적은 실린더헤드의 3차원 열전도해석을 격자망구성이 편리한 경계요소법을 이용하여 수행함으로써 연소실의 벽면온도를 구하여 연소 실내의 열전달과정 해석을 위한 사이클 시뮬레이션에 사용하는데 있다.

Analysis of the experimental cooling performance of a high-power light-emitting diode package with a modified crevice-type vapor chamber heat pipe

  • Kim, Jong-Soo;Bae, Jae-Young;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.801-806
    • /
    • 2015
  • The experimental analysis of a crevice-type vapor chamber heat pipe (CVCHP) is investigated. The heat source of the CVCHP is a high-power light-emitting diode (LED). The CVCHP, which exhibits a bubble pumping effect, is used for heat dissipation in a high-heat-flux system. The working fluid is R-141b, and its charging ratio was set at 60 vol.% of the vapor chamber in a heat pipe. The total thermal conductivity of the falling-liquid-film-type model, which was a modified model, was 24% larger than that of the conventional model in the LED package. Flow visualization results indicated that bubbles grew larger as they combined. These combined bubbles pushed the working fluid to the top, partially wetting the heat-transfer area. The thermal resistance between the vapor chamber and tube in the modified design decreased by approximately 32%. The overall results demonstrated the better heat dissipation upon cooling of the high-power LED package.