• Title/Summary/Keyword: over-oxidation

Search Result 767, Processing Time 0.027 seconds

Examination of lysine requirement of healthy young male adults on a Chinese habitual diet by the modified indicator amino acid oxidation method

  • Tian, Ying;Peng, Jing;Chen, Yu;Gong, Junjun;Xu, Huiqing
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • There is currently no reference for intake of lysine for Chinese people; therefore, the present study was conducted to determine the lysine requirement of Chinese young male adults on a habitual Chinese mixed diet based on the modified indicator amino acid oxidation method. Seven young men with a mean age of $23.7{\pm}2.2$ years that were healthy based on questionnaire, physical examinations and screening tests were evaluated. Subjects were evaluated over five consecutive 7 day periods, during which time they were administered decreasing amounts of lysine via the diet (65, 55, 45, 35, $25mg{\cdot}kg^{-1}{\cdot}d^{-1}$). Subjects were allowed to adapt from day 1 to 6 and the isotopes were measured on day 7 in each period. The subjects' body weights, body compositions and plasma proteins were also examined during the study. Amino acid kinetics were measured based on the indicator amino acid oxidation technique using the $^{13}CO_2$ release rate and phenylalanine oxidation rate to estimate lysine requirements. Body weights, body compositions, and plasma proteins of subjects did not change significantly relative to those at baseline. The mean and the upper 95% CI of lysine requirements of Chinese habitual diets were determined to be 58.41 and $70.09mg{\cdot}kg^{-1}{\cdot}d^{-1}$, respectively, based on the $^{13}CO_2$ release rate and 54.28 and $65.14mg{\cdot}kg^{-1}{\cdot}d^{-1}$, respectively, based on the phenylalanine oxidation rate.

VOCs Oxidation Characteristics of Transition $Metals/\gamma-Al_2O_3$ Catalyst (전이금속/$\gamma-Al_2O_3$ 촉매의 VOCs 산화특성)

  • Kim, Bong-Soo;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.444-451
    • /
    • 2007
  • Catalytic oxidation characteristics of benzene as a VOC was investigated using a fixed bed reactor system over transition $metals/\gamma-Al_2O_3$ catalysts. As transition metals, eight metals including copper, nickel, manganese, iron etc. were adopted. The parametric tests were conducted at the reaction temperature range of $200\sim500^{\circ}C$, benzene concentration of $1,000\sim3,000$ ppm, and space velocity range of $5,000\sim60,000\;hr^{-l}$. The property analyses such as BET, SEM, XRD and the conversions of catalytic oxidation of VOC were examined. The experimental results showed that the conversion was increased with decreasing VOC concentration and space velocity. It was also found that $Cu/\gamma-Al_2O_3$ catalyst calcinated at $500^{\circ}C$ showed the highest activity for the oxidation of benzene and 15% metal loading was the optimum impregnation level.

Simultaneous Application of Platinum-Supported Alumina Catalyst and Ozone Oxidant for Low-temperature Oxidation of Soot (백금담지 알루미나 촉매와 오존 산화제 동시 적용에 의한 탄소 입자상 물질의 저온 산화반응)

  • Lee, Jin Soo;Lee, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.752-760
    • /
    • 2018
  • The lowering of temperature for combustion of diesel particulate matters (or diesel soot) is one of the important tasks in automotive industry that is searching for a way to meet up "high-fuel efficiency, low-emission" standard. In this study, it was discussed how the use of ozone over platinum-based catalyst promotes a low-temperature soot oxidation occurred at $150^{\circ}C$. The use of platinum catalyst did not increase oxidation rate largely but was very effective in improving the selectivity of carbon dioxide. The pre-oxidation of NO into $NO_2$ using ozone was rather crucial in improving the oxidation rate of soot at $150^{\circ}C$.

Activity and Characteristics of Cu-Mn Oxide Catalysts Supported on γ-Al2O3 (γ-Al2O3에 담지된 Cu-Mn 산화물 촉매의 활성 및 특성)

  • Kim, Hye-jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.193-199
    • /
    • 2006
  • The catalytic oxidation of toluene over $-Al_2O_3$ supported copper-manganese oxide catalysts in the temperature range of $160-280^{\circ}C$ was investigated by employing a fixed bed flow reactor. The catalysts were characterized by BET, scanning electron microscopy (SEM), temperature-programmed reduction(TPR), temperature-programmed oxidation(TPO), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD) techniques. Catalytic oxidation of toluene was achieved at the below $280^{\circ}C$, and the optimal content of copper and manganese in the catalyst was found to be 15.0 wt%Cu-10.0 wt%Mn. From the TPR/TPO and XPS results, the redox peak of 15 Cu-10 Mn catalyst shifted to the lower temperature, and the binding energy was shifted to the higher binding energy. Furthermore, It is considered that $Cu_{1.5}Mn_{1.5}O_4$ is superior to Mn oxides and CuO in the role as active factor of catalysts from the XRD results and also catalytic activities are dependent on the redox ability and high oxidation state of catalysts.

Iron Oxidation using Limestone in Groundwater (석회석을 이용한 지하수 철분 산화)

  • Sim, Sang Jun;Kang, Chang Duk;Lee, Ji Hwon;Cho, Young Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.73-81
    • /
    • 2000
  • The removal of ferrous iron (Fe(II)) in groundwater is generally achieved by simple aeration or the addition of oxidizing agent. Aeration followed by solid-liquid separation is the most commonly used as physico-chemical treatment method for iron removal. In general aeration has been shown to be very efficient in insolubilizing ferrous iron at the pH level greater than 6.5. In this study pH was maintained over 6.5 using limestone granules under constant aeration to oxidize ferrous iron. In batch experiments, oxidation rate of ferrous iron was investigated under different conditions including limestone granule size. initial concentration of the ferrous iron, pH, temperature and ionic strength in groundwater. The pH in groundwater was presumed as the most important factor determining oxidation rate of ferrous iron. According as the size of the limestone granules decreased, the pH of the iron contaminated water increased quickly and oxidation of the ferrous iron was achieved immediately too. The oxidation rate of the ferrous iron was found to be proportion to initial concentration of the iron contaminated water, temperature and ionic strength, respectively.

  • PDF

Effect of binder composition on the stability of lipid oxidation and antioxidants of nut-sesame yeotgangjeong (Korean traditional candy bar) (결착제 조성이 견과-깨 엿강정의 저장 중 지방질 산화와 산화방지제 안정성에 미치는 영향)

  • Oh, Boyoung;Shin, Malshick;Choe, Eunok
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.280-285
    • /
    • 2018
  • Lipid oxidation and antioxidant stabilities of nut-sesame yeotgangjeong (Korean traditional candy bar) with different binders were evaluated during storage in the dark. S1, S2, and S3 binders consisted of starch syrup, sugar, and water (58:34:7.6, w/w/w); starch syrup, jocheong, honey, trehalose, and water (43.5:11.6:2.9:34:7.6, w/w/w/w/w); and starch syrup, jocheong, honey, sugar, trehalose, and water (43.5:11.6:2.9:17:17:7.6, w/w/w/w/w/w); respectively. Lipid oxidation was determined by peroxide and p-anisidine values, and tocopherol, lignan, and polyphenol contents were determined spectrophotometrically. Peroxide values were significantly higher (p<0.05) in yeotgangjeong samples with S2 or S3 binder than in those with S1; however, the converse was true for tocopherol degradation. Lignan was the most stable antioxidant in yeotgangjeong. The results suggest that tocopherols have a priority over lignans to control the lipid oxidation of yeotgangjeong during storage; reduced lipid oxidative stability after substituting sugar with trehalose might be because it increases oxygen diffusivity and inhibits the antioxidant action of tocopherols on lipids.

Reduction of Source/Drain Series Resistance in Fin Channel MOSFETs Using Selective Oxidation Technique (선택적 산화 방식을 이용한 핀 채널 MOSFET의 소스/드레인 저항 감소 기법)

  • Cho, Young-Kyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.104-110
    • /
    • 2021
  • A novel selective oxidation process has been developed for low source/drain (S/D) series resistance of the fin channel metal oxide semiconductor field effect transistor (MOSFET). Using this technique, the selective oxidation fin-channel MOSFET (SoxFET) has the gate-all-around structure and gradually enhanced S/D extension regions. The SoxFET demonstrated over 70% reduction in S/D series resistance compared to the control device. Moreover, it was found that the SoxFET behaved better in performance, not only a higher drive current but also higher transconductances with suppressing subthreshold swing and drain induced barrier lowering (DIBL) characteristics, than the control device. The saturation current, threshold voltage, peak linear transconductance, peak saturation transconductance, subthreshold swing, and DIBL for the fabricated SoxFET are 305 ㎂/㎛, 0.33 V, 13.5 𝜇S, 76.4 𝜇S, 78 mV/dec, and 62 mV/V, respectively.

Synthesis of Methanol and Formaldehyde by Partial Oxidation of Methane over Mixed Oxide Catalysts (복합산화물 촉매 상에서 메탄의 부분산화에 의한 메탄올 및 포름알데히드의 합성)

  • Hahm, Hyun-Sik;Shin, Ki-Seok;Ahn, Sung-Hwan;Kim, Song-Hyoung;Hong, Seok-Young;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • Methanol and formaldehyde were produced directly by the partial oxidation of methane over mixed oxide catalysts. The catalysts were composed of Mo and Bi with late-transition metals, such as Mn, Fe, and Co. The reaction was carried out at $450^{\circ}C$, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by $O_2-TPD$ and BET apparatus. Among the catalysts used, the catalyst composed of 1:1:2.5 molar ratio of Mo:Bi:Mn showed the best methane conversion and methanol selectivity. The change in ratio of methane to oxygen affected at the conversion and selectivity, and the most proper ratio was 10:1.5. Methane conversion, methanol and formaldehyde selectivities increased with the surface areas of the catalysts. From the $O_2-TPD$ result, it was found that the oxygen species responsible for this reaction might be the lattice oxygen species desorbed at high temperature around $800^{\circ}C$.

Effect of Water on the Kinetics of Nitric Oxides Reduction by Ammonia over V-based Catalyst (바나듐계 촉매상에서 암모니아를 이용한 질소산화물의 환원반응속도에 수분이 미치는 영향에 관한 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.73-82
    • /
    • 2012
  • The main and side reactions of the three selective catalytic reduction (SCR) reactions with ammonia over a vanadium-based catalyst have been investigated using synthetic gas mixtures in the temperature range of $170{\sim}590^{\circ}C$. The three SCR reactions are standard SCR with pure NO, fast SCR with an equimolar mixture of NO and $NO_2$, and $NO_2$ SCR with pure $NO_2$. Vanadium based catalyst has no significant activity in NO oxidation to $NO_2$, while it has high activity for $NO_2$ decomposition at high temperatures. The selective catalytic oxidation of ammonia and the formation of nitrous oxide compete with the SCR reactions at the high temperatures. Water strongly inhibits the selective catalytic oxidation of ammonia and the formation of nitrous oxide, thus increasing the selectivity of the SCR reactions. However, the presence of water inhibits the SCR activity, most pronounced at low temperatures. In this study, the experimental results are analyzed by means of a dynamic one-dimensional isothermal heterogeneous plug-flow reactor (PFR) model according to the Eley-Rideal mechanism.

Photocatalytic Oxidation of 2-Mercaptoethanol to Disulfide using Sb(V)-, P(V)-, and Ge(IV)-porphyrin Complexes

  • Shiragami, Tsutomu;Onitsuka, Dai;Matsumoto, Jin;Yasuda, Masahide
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.70-72
    • /
    • 2014
  • Visible-light irradiation of MeCN solution containing di(hydroxo)metallo(tetraphenyl)porphyrin complex $(tppM(OH)_2$: 1a; $M=Sb(V)^+Br^-$, 1b; $M=P(V)^+Cl^-$, 1c; M=Ge(IV)) and 2-mercaptoethanol (2-ME) as a substrate under aerated condition gave bis(2-hydroxyethyl)disulfide (2-HEDS) as an oxidative product of 2-ME. It is indicated that the oxidation of 2-ME should proceed with a photocatalytic process by 1, because the turn over number (TON) for the formation of 2-HEDS was over unit. The TON was determined to be 642 as a maximum value when 1a was used as a sensitizer. The formation of 2-HDES was extremely slow under argon atmosphere. The fluorescence of 1 was not quenched by 2-ME at all, and the free energy change (${\Delta}G$) with electron transfer (ET) from 2-ME to excited triplet state of $1(^31^*)$ was estimated as a negative value. The quenching rate constant ($k_r$) of $^31^*$ by 2-ME, obtained by the kinetics for the formation of 2-HEDS, strongly depends on ${\Delta}G$. These findings indicate that 1-sensitized oxidation was initiated by photoinduced ET from 2-ME to $^31^*$ to generate both radical cation of 2-ME ($2-ME^{+\bulle}$) and porphyrin radical anion ($1^{-\bulle}$), resulting that the formation of 2-HEDS can be proceeded by the dimerization of $2-ME^{+\bulle}$, and through a catalytic cycle due to returning to 1 by the ET from $1^{-\bulle}$ to molecular oxygen.