영상처리는 정확한 오이의 형상 및 위치를 인식하기 위하여 형상인식 알고리즘에 대한 연구를 수행하였다. 다양한 오이형상을 인식하기 위한 방법으로는 신경회로망의 연상 메모리 알고리즘을 이용하여 오이의 특정형상을 인식하였다. 형상인식은 실제영상에서 오이의 형상과 위치를 판정할 수 있도록 알고리즘을 개발한 결과, 다음과 같은 결론을 얻었다. 본 알고리즘에서는 일정한 학습패턴의 수를 2개, 3개, 4개를 각각 기억시켜 샘플패턴 20개를 실험하여 연상시킨 결과, 학습패턴으로 복원된 출력패턴의 비율은 각각 65.0%, 45.0%, 12.5%로 나타났다. 이는 학습패턴의 수가 많을수록 수렴할 때, 다른 출력패턴으로 많이 검출되었다. 오이의 특정형상 검출은 $30{\times}30$간격으로 자동검출 되도록 처리하였다. 실제영상에서 자동 검출로 처리한 결과, 오이인식의 처리시간은 약 0.5~1초/1개(패턴) 빠르게 검출되었다. 또한, 다섯 개의 실제 영상에서 실험한 결과, 학습패턴에 대한 다른 출력패턴은 96~99%의 제거율을 나타내었다. 오이로 인식된 출력패턴 중에서, 오검출된 출력패턴의 비율은 0.1~4.2%를 나타내었다. 본 연구에서는 신경회로망을 이용하여 오이의 형상 및 위치를 인식할 수 있도록 알고리즘을 개발하였다. 오이의 위치측정은 실제영상에서 학습패턴과 유사한 출력패턴의 좌표를 가지고, 오이의 위치좌표를 추정할 수 있었다.
This paper presents a new image cache algorithm for real-time implementation of high-resolution color image warping. The cache memory is divided into four cache memory modules for simultaneous readout of four input image pixels in consideration of the color filter array (CFA) pattern of an image sensor and CFA image warping. In addition, a pipeline structure from the cache memory to an interpolator is shown to guarantee the generation of an output image pixel at each system clock cycle. The proposed image cache algorithm is applied to an FPGA-based real-time color image warping, and experimental results are presented to show the validity of the proposed method.
정확한 오이의 형상 및 위치를 인식하기 위하여 형상인식 알고리즘에 대한 연구를 수행하였다. 실제 영상에서 오이의 형상과 위치를 판정할 수 있도록 알고리즘을 개발한 결과, 다음과 같은 결론을 얻었다. 오이의 특징형상 검출은 $15{\times}15$ 간격으로 자동검출 되도록 처리하였다. 오이로 인식된 출력패턴 중에서 오검출된 출력패턴의 비율은 0.1~4.2%로 나타났다. 오류역전파 알고리즘은 영상크기를 $445{\times}363$, $501{\times}391$, $300{\times}421$, $450{\times}271$, $297{\times}421$의 크기에 따라 출력패턴을 얻은 결과 영상의 크기에 따른 검출 값의 변화는 없는 것으로 나타났다. 학습패턴 수가 25개로 증가하면 영상에서 다른 패턴을 검출하는 비율이 16.02%로 나타났다. 또한 학습패턴이 2개인 경우 40개의 영상에서 8개의 오이를 검출하지 못하였다. 학습패턴의 수가 7~9개인 경우 오이의 검출이 가장 좋은 것으로 나타났다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권2호
/
pp.544-564
/
2022
Underwater images often suffer from color distortion, blurring and low contrast, which is caused by the propagation of light in the underwater environment being affected by the two processes: absorption and scattering. To cope with the poor quality of underwater images, this paper proposes a multiscale fusion underwater image enhancement method based on channel attention mechanism and local binary pattern (LBP). The network consists of three modules: feature aggregation, image reconstruction and LBP enhancement. The feature aggregation module aggregates feature information at different scales of the image, and the image reconstruction module restores the output features to high-quality underwater images. The network also introduces channel attention mechanism to make the network pay more attention to the channels containing important information. The detail information is protected by real-time superposition with feature information. Experimental results demonstrate that the method in this paper produces results with correct colors and complete details, and outperforms existing methods in quantitative metrics.
본 연구에서는 포터블 형 X-ray 발생장치를 제작하였고, 제작된 발생장치로부터 영상증배관을 이용하여 실시간 영상획득시스템 구축하였다. 획득된 영상으로부터 인공관절 위치가 초기 영상과 차이가 있는지를 검증할 수 있는 실시간 위치오차검증 시스템을 개발하였다. 패턴 매칭 기법을 이용하여 간단히 기준영상에서 관심영역 부위의 템플릿영상을 추출하여 비교하고 싶은 비교영상과 비교하여 본 결과 500-1000점 사이의 유사도를 수치로 표시하여 유사정도를 알 수 있었고, x, y 위치와 차이가 나는 각도를 표시해 줌으로써 실시간 위치오차검증이 가능함을 알 수 있었다. 본 시스템은 포터블형이며, 자체 차폐시설을 갖추고 있다. 조사장치의 출력도 1kw의 소형으로 제작되어 이동형으로 사용할 수 있으며, 산업용의 비파괴분야 및 의료기관이 없는 외진 곳에서 발생된 응급환자의 경우 손, 발과 같은 작은 부위의 진단용 분야 등에 활용할 수 있는 유효성을 보여주었다.
한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
/
pp.780-791
/
1996
A hybrid image processing system which automatically distinguished lean tissues in the image of a complex beef cut surface and generated the lean tissue contour has been developed. Because of the in homegeneous distribution and fuzzy pattern of fat and lean tissue on the beef cut, conventional image segmentation and contour generation algorithm suffer from a heavy computing requirement, algorithm complexity and poor robustness. The proposed system utilizes an artificial neural network enhance the robustness of processing. The system is composed of pre-network , network and post-network processing stages. At the pre-network stage, gray level images of beef cuts were segmented and resized to be adequate to the network input. Features such as fat and bone were enhanced and the enhanced input image was converted tot he grid pattern image, whose grid was formed as 4 X4 pixel size. at the network stage, the normalized gray value of each grid image was taken as the network input. Th pre-trained network generated the grid image output of the isolated lean tissue. A training scheme of the network and the separating performance were presented and analyzed. The developed hybrid system showed the feasibility of the human like robust object segmentation and contour generation for the complex , fuzzy and irregular image.
셀룰라 신경회로망의 연상 메모리를 이용하여 시각적인 입력 데이터의 연산을 통하여 영상 패턴의 분류와 인식을 수행한다. 셀룰라 신경회로망은 일반적인 신경회로망과 같이 비선형 데이터의 실시간 처리가 가능하고, 세포자동자와 같이 이 격자구조의 셀로 이루어져 인접한 셀과 직접 정보를 주고받는다. 응용 분야로는 최적화, 선형/비선형화, 연상 메모리, 패턴인식, 컴퓨터 비전 등에 적용할 수 있다. 영상의 이미지 픽셀을 셀룰라 신경회로망의 셀에 대응하여 전체 이미지 영상을 모든 셀룰라 신경회로망의 셀에서 동시에 병렬로 처리할 수 있어 2-D 이미지 처리에 적합하다. 본 논문은 셀룰라 신경회로망에 의한 연상 메모리 구조를 설계하고, 학습된 하중값 메모리에서 가장 적당한 하중값을 선택하여 학습된 영상과 정확히 일치하는 출력을 얻는 방법을 제시한다. 학습을 통한 연상 메모리 구현에는 각각의 뉴런에서 일정하지 않은 다른 템플릿을 사용한다. 각각의 템플릿은 뉴런들 간의 연결 하중값을 나타내고 학습에 따라 갱신된다. 학습방법으로는 템플릿 하중값 학습에 뉴런들 간의 연결 하중값을 조정하는 가장 단순한 규칙인 Hebb의 학습방법이 사용되었고 분류값 학습에 LMS 알고리즘이 사용되었다.
본 논문에서 위상변조와 푸리에 변환을 이용하여 이진 영상을 위한 새로운 암호화 방법을 제안한다. 복호를 위해서 제곱칙 특성을 이용한다. 키 영상은 랜덤 패턴의 위상변조와 그의 푸리에 변환으로 구해지며 입력영상은 위상 변조된 랜덤 패턴과 위상 변조된 입력의 곱을 푸리에 변환함으로서 암호화된다 암호화된 영상과 키 영상은 위상 정보만을 가지므로 일반 세기 검출기로는 복사나 위조가 불가능하며 복호는 키 영상에 의해서만 가능하다. 원 영상을 재생하기 위해, 키 영상과 암호화된 영상의 위상 마스크는 푸리에 변환 렌즈와 함께 각각 마흐-젠더 간섭계 경로에 따로 두며 출력 영상은 CCD 카메라에 세기 형태로 나타난다. 제안한 방법은 위상 변조기로 LCD를 사용하고 CCD 카메라의 특성을 이용하여 재생하므로 실시간 처리가 가능하다. 제안된 방법이 컴퓨터 모의 실험과 광학적 실험 결과 암호화 구조로서 우수한 성능을 갖음을 보여준다.
In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.
In this paper, an augmented video generation method to evaluate the performance of lane departure warning system is proposed. In our system, the input is a video which have road scene with general clean lane, and the content of output video is the same but the lane is synthesized with contamination image. In order to synthesize the contamination lane image, two approaches were used. One is example-based image synthesis, and the other is background-based image synthesis. Example-based image synthesis is generated in the assumption of the situation that contamination is applied to the lane, and background-based image synthesis is for the situation that the lane is erased due to aging. In this paper, a new contamination pattern generation method using Gaussian function is also proposed in order to produce contamination with various shape and size. The contamination lane video can be generated by shifting synthesized image as lane movement amount obtained empirically. Our experiment showed that the similarity between the generated contamination lane image and real lane image is over 90 %. Futhermore, we can verify the reliability of the video generated from the proposed method through the analysis of the change of lane recognition rate. In other words, the recognition rate based on the video generated from the proposed method is very similar to that of the real contamination lane video.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.