• 제목/요약/키워드: output pattern real image

검색결과 20건 처리시간 0.024초

오이수확로봇의 영상처리를 위한 형상인식 알고리즘에 관한 연구 (The Research of Shape Recognition Algorithm for Image Processing of Cucumber Harvest Robot)

  • 민병로;임기택;이대원
    • 생물환경조절학회지
    • /
    • 제20권2호
    • /
    • pp.63-71
    • /
    • 2011
  • 영상처리는 정확한 오이의 형상 및 위치를 인식하기 위하여 형상인식 알고리즘에 대한 연구를 수행하였다. 다양한 오이형상을 인식하기 위한 방법으로는 신경회로망의 연상 메모리 알고리즘을 이용하여 오이의 특정형상을 인식하였다. 형상인식은 실제영상에서 오이의 형상과 위치를 판정할 수 있도록 알고리즘을 개발한 결과, 다음과 같은 결론을 얻었다. 본 알고리즘에서는 일정한 학습패턴의 수를 2개, 3개, 4개를 각각 기억시켜 샘플패턴 20개를 실험하여 연상시킨 결과, 학습패턴으로 복원된 출력패턴의 비율은 각각 65.0%, 45.0%, 12.5%로 나타났다. 이는 학습패턴의 수가 많을수록 수렴할 때, 다른 출력패턴으로 많이 검출되었다. 오이의 특정형상 검출은 $30{\times}30$간격으로 자동검출 되도록 처리하였다. 실제영상에서 자동 검출로 처리한 결과, 오이인식의 처리시간은 약 0.5~1초/1개(패턴) 빠르게 검출되었다. 또한, 다섯 개의 실제 영상에서 실험한 결과, 학습패턴에 대한 다른 출력패턴은 96~99%의 제거율을 나타내었다. 오이로 인식된 출력패턴 중에서, 오검출된 출력패턴의 비율은 0.1~4.2%를 나타내었다. 본 연구에서는 신경회로망을 이용하여 오이의 형상 및 위치를 인식할 수 있도록 알고리즘을 개발하였다. 오이의 위치측정은 실제영상에서 학습패턴과 유사한 출력패턴의 좌표를 가지고, 오이의 위치좌표를 추정할 수 있었다.

고해상도 컬러 영상 워핑의 실시간 구현을 위한 영상 캐시 알고리즘 (Image Cache Algorithm for Real-time Implementation of High-resolution Color Image Warping)

  • 이유진;류정래
    • 제어로봇시스템학회논문지
    • /
    • 제22권8호
    • /
    • pp.643-649
    • /
    • 2016
  • This paper presents a new image cache algorithm for real-time implementation of high-resolution color image warping. The cache memory is divided into four cache memory modules for simultaneous readout of four input image pixels in consideration of the color filter array (CFA) pattern of an image sensor and CFA image warping. In addition, a pipeline structure from the cache memory to an interpolator is shown to guarantee the generation of an output image pixel at each system clock cycle. The proposed image cache algorithm is applied to an FPGA-based real-time color image warping, and experimental results are presented to show the validity of the proposed method.

신경회로망의 오류역전파 알고리즘을 이용한 오이 인식 (The Cucumber Cognizance for Back Propagation of Nerual Network)

  • 민병로;이대원
    • 생물환경조절학회지
    • /
    • 제20권4호
    • /
    • pp.277-282
    • /
    • 2011
  • 정확한 오이의 형상 및 위치를 인식하기 위하여 형상인식 알고리즘에 대한 연구를 수행하였다. 실제 영상에서 오이의 형상과 위치를 판정할 수 있도록 알고리즘을 개발한 결과, 다음과 같은 결론을 얻었다. 오이의 특징형상 검출은 $15{\times}15$ 간격으로 자동검출 되도록 처리하였다. 오이로 인식된 출력패턴 중에서 오검출된 출력패턴의 비율은 0.1~4.2%로 나타났다. 오류역전파 알고리즘은 영상크기를 $445{\times}363$, $501{\times}391$, $300{\times}421$, $450{\times}271$, $297{\times}421$의 크기에 따라 출력패턴을 얻은 결과 영상의 크기에 따른 검출 값의 변화는 없는 것으로 나타났다. 학습패턴 수가 25개로 증가하면 영상에서 다른 패턴을 검출하는 비율이 16.02%로 나타났다. 또한 학습패턴이 2개인 경우 40개의 영상에서 8개의 오이를 검출하지 못하였다. 학습패턴의 수가 7~9개인 경우 오이의 검출이 가장 좋은 것으로 나타났다.

Attention-based for Multiscale Fusion Underwater Image Enhancement

  • Huang, Zhixiong;Li, Jinjiang;Hua, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.544-564
    • /
    • 2022
  • Underwater images often suffer from color distortion, blurring and low contrast, which is caused by the propagation of light in the underwater environment being affected by the two processes: absorption and scattering. To cope with the poor quality of underwater images, this paper proposes a multiscale fusion underwater image enhancement method based on channel attention mechanism and local binary pattern (LBP). The network consists of three modules: feature aggregation, image reconstruction and LBP enhancement. The feature aggregation module aggregates feature information at different scales of the image, and the image reconstruction module restores the output features to high-quality underwater images. The network also introduces channel attention mechanism to make the network pay more attention to the channels containing important information. The detail information is protected by real-time superposition with feature information. Experimental results demonstrate that the method in this paper produces results with correct colors and complete details, and outperforms existing methods in quantitative metrics.

영상증배관을 이용한 실시간 영상획득시스템과 위치오차검증 (Real Time Image Acquisition System using a Image Intensifier and Position Error Verification)

  • 이동훈;김남훈;정종범
    • 재활복지공학회논문지
    • /
    • 제11권4호
    • /
    • pp.331-338
    • /
    • 2017
  • 본 연구에서는 포터블 형 X-ray 발생장치를 제작하였고, 제작된 발생장치로부터 영상증배관을 이용하여 실시간 영상획득시스템 구축하였다. 획득된 영상으로부터 인공관절 위치가 초기 영상과 차이가 있는지를 검증할 수 있는 실시간 위치오차검증 시스템을 개발하였다. 패턴 매칭 기법을 이용하여 간단히 기준영상에서 관심영역 부위의 템플릿영상을 추출하여 비교하고 싶은 비교영상과 비교하여 본 결과 500-1000점 사이의 유사도를 수치로 표시하여 유사정도를 알 수 있었고, x, y 위치와 차이가 나는 각도를 표시해 줌으로써 실시간 위치오차검증이 가능함을 알 수 있었다. 본 시스템은 포터블형이며, 자체 차폐시설을 갖추고 있다. 조사장치의 출력도 1kw의 소형으로 제작되어 이동형으로 사용할 수 있으며, 산업용의 비파괴분야 및 의료기관이 없는 외진 곳에서 발생된 응급환자의 경우 손, 발과 같은 작은 부위의 진단용 분야 등에 활용할 수 있는 유효성을 보여주었다.

Robust Extraction of Lean Tissue Contour From Beef Cut Surface Image

  • Heon Hwang;Lee, Y.K.;Y.r. Chen
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.780-791
    • /
    • 1996
  • A hybrid image processing system which automatically distinguished lean tissues in the image of a complex beef cut surface and generated the lean tissue contour has been developed. Because of the in homegeneous distribution and fuzzy pattern of fat and lean tissue on the beef cut, conventional image segmentation and contour generation algorithm suffer from a heavy computing requirement, algorithm complexity and poor robustness. The proposed system utilizes an artificial neural network enhance the robustness of processing. The system is composed of pre-network , network and post-network processing stages. At the pre-network stage, gray level images of beef cuts were segmented and resized to be adequate to the network input. Features such as fat and bone were enhanced and the enhanced input image was converted tot he grid pattern image, whose grid was formed as 4 X4 pixel size. at the network stage, the normalized gray value of each grid image was taken as the network input. Th pre-trained network generated the grid image output of the isolated lean tissue. A training scheme of the network and the separating performance were presented and analyzed. The developed hybrid system showed the feasibility of the human like robust object segmentation and contour generation for the complex , fuzzy and irregular image.

  • PDF

셀룰라 신경회로망의 연상메모리를 이용한 영상 패턴의 분류 및 인식방법 (Image Pattern Classification and Recognition by Using the Associative Memory with Cellular Neural Networks)

  • 신윤철;박용훈;강훈
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.154-162
    • /
    • 2003
  • 셀룰라 신경회로망의 연상 메모리를 이용하여 시각적인 입력 데이터의 연산을 통하여 영상 패턴의 분류와 인식을 수행한다. 셀룰라 신경회로망은 일반적인 신경회로망과 같이 비선형 데이터의 실시간 처리가 가능하고, 세포자동자와 같이 이 격자구조의 셀로 이루어져 인접한 셀과 직접 정보를 주고받는다. 응용 분야로는 최적화, 선형/비선형화, 연상 메모리, 패턴인식, 컴퓨터 비전 등에 적용할 수 있다. 영상의 이미지 픽셀을 셀룰라 신경회로망의 셀에 대응하여 전체 이미지 영상을 모든 셀룰라 신경회로망의 셀에서 동시에 병렬로 처리할 수 있어 2-D 이미지 처리에 적합하다. 본 논문은 셀룰라 신경회로망에 의한 연상 메모리 구조를 설계하고, 학습된 하중값 메모리에서 가장 적당한 하중값을 선택하여 학습된 영상과 정확히 일치하는 출력을 얻는 방법을 제시한다. 학습을 통한 연상 메모리 구현에는 각각의 뉴런에서 일정하지 않은 다른 템플릿을 사용한다. 각각의 템플릿은 뉴런들 간의 연결 하중값을 나타내고 학습에 따라 갱신된다. 학습방법으로는 템플릿 하중값 학습에 뉴런들 간의 연결 하중값을 조정하는 가장 단순한 규칙인 Hebb의 학습방법이 사용되었고 분류값 학습에 LMS 알고리즘이 사용되었다.

세기검출기를 이용한 광 영상 암호화 (Optical Image Encryption Based on Characteristics of Square Law Detector)

  • 이응대;박세준;이하운;김수중
    • 대한전자공학회논문지SD
    • /
    • 제39권3호
    • /
    • pp.34-40
    • /
    • 2002
  • 본 논문에서 위상변조와 푸리에 변환을 이용하여 이진 영상을 위한 새로운 암호화 방법을 제안한다. 복호를 위해서 제곱칙 특성을 이용한다. 키 영상은 랜덤 패턴의 위상변조와 그의 푸리에 변환으로 구해지며 입력영상은 위상 변조된 랜덤 패턴과 위상 변조된 입력의 곱을 푸리에 변환함으로서 암호화된다 암호화된 영상과 키 영상은 위상 정보만을 가지므로 일반 세기 검출기로는 복사나 위조가 불가능하며 복호는 키 영상에 의해서만 가능하다. 원 영상을 재생하기 위해, 키 영상과 암호화된 영상의 위상 마스크는 푸리에 변환 렌즈와 함께 각각 마흐-젠더 간섭계 경로에 따로 두며 출력 영상은 CCD 카메라에 세기 형태로 나타난다. 제안한 방법은 위상 변조기로 LCD를 사용하고 CCD 카메라의 특성을 이용하여 재생하므로 실시간 처리가 가능하다. 제안된 방법이 컴퓨터 모의 실험과 광학적 실험 결과 암호화 구조로서 우수한 성능을 갖음을 보여준다.

실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계 (A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image)

  • 오성권;석진욱;김기상;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

차선 이탈 경고 시스템의 성능 검증을 위한 가상의 오염 차선 이미지 및 비디오 생성 방법 (Virtual Contamination Lane Image and Video Generation Method for the Performance Evaluation of the Lane Departure Warning System)

  • 곽재호;김회율
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.627-634
    • /
    • 2016
  • In this paper, an augmented video generation method to evaluate the performance of lane departure warning system is proposed. In our system, the input is a video which have road scene with general clean lane, and the content of output video is the same but the lane is synthesized with contamination image. In order to synthesize the contamination lane image, two approaches were used. One is example-based image synthesis, and the other is background-based image synthesis. Example-based image synthesis is generated in the assumption of the situation that contamination is applied to the lane, and background-based image synthesis is for the situation that the lane is erased due to aging. In this paper, a new contamination pattern generation method using Gaussian function is also proposed in order to produce contamination with various shape and size. The contamination lane video can be generated by shifting synthesized image as lane movement amount obtained empirically. Our experiment showed that the similarity between the generated contamination lane image and real lane image is over 90 %. Futhermore, we can verify the reliability of the video generated from the proposed method through the analysis of the change of lane recognition rate. In other words, the recognition rate based on the video generated from the proposed method is very similar to that of the real contamination lane video.