Abstract
We carried out shape recognition. We found out cucumber's feature shape by means of neural network and back propagation algorithm. We developed an algorithm which finds object position and shape in real image and we gained following conclusion as a result. It was processed for feature shape extraction of cucumber to detect automatic. The output pattern rates of the miss-detected objects was 0.1~4.2% in the output pattern which was recognized as cucumber. We were gained output pattern according to image resolution $445{\times}363$, $501{\times}391$, $450{\times}271$, $297{\times}421$. It was appeared that no change was detected. When learning pattern was increased to 25, miss-detection ratio was 16.02%, and when learning pattern had 2 pattern, it didn't detect 8 cucumber in 40 images.
정확한 오이의 형상 및 위치를 인식하기 위하여 형상인식 알고리즘에 대한 연구를 수행하였다. 실제 영상에서 오이의 형상과 위치를 판정할 수 있도록 알고리즘을 개발한 결과, 다음과 같은 결론을 얻었다. 오이의 특징형상 검출은 $15{\times}15$ 간격으로 자동검출 되도록 처리하였다. 오이로 인식된 출력패턴 중에서 오검출된 출력패턴의 비율은 0.1~4.2%로 나타났다. 오류역전파 알고리즘은 영상크기를 $445{\times}363$, $501{\times}391$, $300{\times}421$, $450{\times}271$, $297{\times}421$의 크기에 따라 출력패턴을 얻은 결과 영상의 크기에 따른 검출 값의 변화는 없는 것으로 나타났다. 학습패턴 수가 25개로 증가하면 영상에서 다른 패턴을 검출하는 비율이 16.02%로 나타났다. 또한 학습패턴이 2개인 경우 40개의 영상에서 8개의 오이를 검출하지 못하였다. 학습패턴의 수가 7~9개인 경우 오이의 검출이 가장 좋은 것으로 나타났다.