• Title/Summary/Keyword: output optimal controller

Search Result 207, Processing Time 0.026 seconds

The Design of Position Controll System by Model Following Servo Controller (Model 추종형 Servo Controller에 의한 위치제어계의 설계)

  • 장기효;하홍곤;홍창희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • In this paper the design and construction of discrete model following servo dontroller on the position control system is proposed. The operational time delay of the plant in the controller which is proposed, is considered and the system which is added by the integral compensation in first order difference equation is constructed. By applying the optimal regulator method to the system, the method which find the optimal state feedback gain is developed theoretically. The output of a model which is correspond to a DC Servo motor follow quickly the speed response of a DC Servo motor and the velocity error in ansteady-state is reduced in zero and the position response is controlled correctly, the performance of the controller is contoller is confirmed by Computer Simulation.

  • PDF

Optimal PID Controller Design for DC Motor Speed Control System with Tracking and Regulating Constrained Optimization via Cuckoo Search

  • Puangdownreong, Deacha
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.460-467
    • /
    • 2018
  • Metaheuristic optimization approach has become the new framework for control synthesis. The main purposes of the control design are command (input) tracking and load (disturbance) regulating. This article proposes an optimal proportional-integral-derivative (PID) controller design for the DC motor speed control system with tracking and regulating constrained optimization by using the cuckoo search (CS), one of the most efficient population-based metaheuristic optimization techniques. The sum-squared error between the referent input and the controlled output is set as the objective function to be minimized. The rise time, the maximum overshoot, settling time and steady-state error are set as inequality constraints for tracking purpose, while the regulating time and the maximum overshoot of load regulation are set as inequality constraints for regulating purpose. Results obtained by the CS will be compared with those obtained by the conventional design method named Ziegler-Nichols (Z-N) tuning rules. From simulation results, it was found that the Z-N provides an impractical PID controller with very high gains, whereas the CS gives an optimal PID controller for DC motor speed control system satisfying the preset tracking and regulating constraints. In addition, the simulation results are confirmed by the experimental ones from the DC motor speed control system developed by analog technology.

Optimal Output Feedback Control Simulation for the Operation of Space Shuttle Main Engine (우주왕복선 액체로켓엔진 작동의 최적출력제어 시뮬레이션)

  • Cha, Jihyoung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.37-53
    • /
    • 2016
  • This paper deals with an optimal output control for Space Shuttle Main Engine (SSME), a liquid propellant rocket engine using a staged-combustion cycle. For this purpose, we modeled simplified mathematical model of SSME using each SSME component divided into 7 major categories and found trim points called Rated Propulsion Level (RPL). For design the closed-loop system of SSME, we designed optimal output feedback Linear Quadratic Regulation (LQR) control system using SSME linearized model under RPL 104% and demonstrated the performance of the controller through numerical simulation.

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters

  • Saleem, Omer;Rizwan, Mohsin;Khizar, Ahmad;Ahmad, Muaaz
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.835-845
    • /
    • 2019
  • This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.

A Study on the Fuzzy Control of Series Wound Motor Drive Systems uUing Genetic Algorithms (유전알고리즘을 이용한 직류직권모터 시스템의 퍼지제어에 관한 연구)

  • 김종건;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.60-64
    • /
    • 1997
  • Designing fuzzy controller, there are difficulties that we have to determine fuzzy rules and shapes of membership functions which are usually obtained by the amount of trial-and-error or experiences from the experts. In this paper, to overcome these defects, genetic algorithms which is probabilistic search method based on genetics and evolution theory are used to determine fuzzy rules and fuzzy membership functions. We design a series compensation fuzzy controller, then determine basic structures, input-output variables, fuzzy inference methods and defuzzification methods for fuzzy controllers. We develop genetic algorithms which may search more accurate optimal solutions. For evaluating the fuzzy controller performances through experiments upon an actual system, we design the fuzzy controllers for the speed control of a DC series motor with nonlinear characteristics and show good output responses to reference inputs.

  • PDF

Simultaneous Control of Frequency Fluctuation and Battery SOC in a Smart Grid using LFC and EV Controllers based on Optimal MIMO-MPC

  • Pahasa, Jonglak;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.601-611
    • /
    • 2017
  • This paper proposes a simultaneous control of frequency deviation and electric vehicles (EVs) battery state of charge (SOC) using load frequency control (LFC) and EV controllers. In order to provide both frequency stabilization and SOC schedule near optimal performance within the whole operating regions, a multiple-input multiple-output model predictive control (MIMO-MPC) is employed for the coordination of LFC and EV controllers. The MIMO-MPC is an effective model-based prediction which calculates future control signals by an optimization of quadratic programming based on the plant model, past manipulate, measured disturbance, and control signals. By optimizing the input and output weights of the MIMO-MPC using particle swarm optimization (PSO), the optimal MIMO-MPC for simultaneous control of the LFC and EVs, is able to stabilize the frequency fluctuation and maintain the desired battery SOC at the certain time, effectively. Simulation study in a two-area interconnected power system with wind farms shows the effectiveness of the proposed MIMO-MPC over the proportional integral (PI) controller and the decentralized vehicle to grid control (DVC) controller.

PID Type Iterative Learning Control with Optimal Gains

  • Madady, Ali
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • Iterative learning control (ILC) is a simple and effective method for the control of systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and derivative) type ILC update law for control discrete-time single input single-output (SISO) linear time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled system in current cycle is modified by applying the PID strategy on the error achieved between the system output and the desired trajectory in a last previous iteration. The convergence of the presented scheme is analyzed and its convergence condition is obtained in terms of the PID coefficients. An optimal design method is proposed to determine the PID coefficients. It is also shown that under some given conditions, this optimal iterative learning controller can guarantee the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of the proposed technique.

A Learning Method of LQR Controller Using Jacobian (자코비안을 이용한 LQR 제어기 학습법)

  • Lim, Yoon-Kyu;Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.34-41
    • /
    • 2005
  • Generally, it is not easy to get a suitable controller for multi variable systems. If the modeling equation of the system can be found, it is possible to get LQR control as an optimal solution. This paper suggests an LQR learning method to design LQR controller without the modeling equation. The proposed algorithm uses the same cost function with error and input energy as LQR is used, and the LQR controller is trained to reduce the function. In this training process, the Jacobian matrix that informs the converging direction of the controller Is used. Jacobian means the relationship of output variations for input variations and can be approximately found by the simple experiments. In the simulations of a hydrofoil catamaran with multi variables, it can be confirmed that the training of LQR controller is possible by using the approximate Jacobian matrix instead of the modeling equation and this controller is not worse than the traditional LQR controller.

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.