• Title/Summary/Keyword: output delay

Search Result 778, Processing Time 0.019 seconds

Time-Discretization of Nonlinear Systems with Time Delayed Output via Taylor Series

  • Yuanliang Zhang;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.950-960
    • /
    • 2006
  • An output time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via a digital computer. A new method for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed in this paper. This method is applied to the sampled-data representation of a nonlinear system with a constant output time-delay. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. In addition, 'hybrid' discretization schemes resulting from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. A performance of the proposed method is evaluated using two nonlinear systems with time-delay output.

Performance Analysis of Time Division Multiplexed Optical Output Buffers (시간 분할 다중합 광 출력 버퍼의 성능 분석)

  • 정준영;고광철;정제명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.751-759
    • /
    • 2003
  • We analyze the performances, such as the cell loss probability(CLR) and the cell delay time, of time division multiplexed(TDM) optical output buffers using traveling delay lines or delay-line loops for buffering. Since traveling delay lines used for buffering are superior over delay-line loops in terms of simplicity and signal quality, they were used in a conventional TDM optical output buffer. However, the latter is more flexible than the former in that the cell storage time is adjustable by changing the recirculating times of a cell in the loops. So we propose a novel TDM optical output buffer using delay-line loops for buffering. We show that the proposed TDM optical output buffer can reduce the number of buffering unit required to achieve a CLR of less than 10$^{-9}$ . When the number of buffering unit is sufficiently large, we show that both TDM optical output buffers have same cell delay time characteristic.

Design of Fuzzy Output Feedback Controller for The Nonlinear Systems with Time -Delay

  • Shin, Hyun-Seok;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.559-564
    • /
    • 2002
  • This Paper Proposes a design method of a fuzzy output feedback controller for the nonlinear systems with the unknown time- delay. Recently, Cao et ai. proposed a stabilization method for the nonlinear time-delay systems using a fuzzy controller when the time-delay is known. However, the time-delay is likely to be unknown in practical. We represent the nonlinear systems with the unknown time-delay by Takagi-Sugeno (T-5) fuzzy model and design the fuzzy observer and the parallel distributed compensation (PDC) law based on this observer. By applying Lyapunov-Krasovskii theorem to the closed-loop system, the sufficient condition for the asymptotic stability of the equilibrium Point is derived and converted into the linear matrix inequality (LMI) Problem.

Time-Delay Effects on DC Characteristics of Peak Current Controlled Power LED Drivers

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.715-722
    • /
    • 2012
  • New discrete time domain models for the peak current controlled (PCC) power LED drivers in continuous conduction mode include for the first time the effects of the time delay in the pulse-width-modulator. Realistic amounts of time delay are found to have significant effects on the average output LED current and on the critical inductor value at the boundary between the two conduction modes. Especially, the time delay can provide an accurate LED current for the PCC buck converter with a wide input voltage. The models can also predict the critical inductor value at the mode boundary as functions of the input voltage and the time delay. The overshoot of the peak inductor current due to the time delay results in the increase of the average output current and the reduction of the critical inductor value at the mode boundary in all converters. Experimental results are presented for the PCC buck LED driver with constant-frequency controller.

Output Feedback Control for Feedforward Nonlinear Systems with Time Delay (시간지연을 갖는 피드포워드 비선형시스템의 출력 피드백 제어)

  • Lee, Sungryul
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2013
  • This paper presents the output feedback control design for feedforward nonlinear systems with input and output delay. The proposed output feedback controller is composed of a linear observer and a linear controller. It is shown that by using Lyapunov-Krasovskii theorem, the proposed controller ensures a global asymptotic stability for arbitrarily large delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Bilateral Controller for Time-varying Communication Delay: Time Domain Passivity Approach (시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기 : 시간영역 수동성 기법)

  • Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1099-1105
    • /
    • 2007
  • In this paper, modified two-port time-domain passivity approach is proposed for stable bilateral control of teleoperators under time-varying communication delay. We separate input and output energy at each port of a bilateral controller, and propose a sufficient condition for satisfying the passivity of the bilateral controller including time-delay. Output energy at the master port should be less than the transmitted input energy from the slave port with time-delay, and output energy at the slave port should be less than the transmitted input energy from the master port with time-delay. For satisfying above two conditions, two passivity controllers are attached at each port of the bilateral controller. A packet reflector with wireless internet connection is used to introduce serious time-varying communication delay of teleoperators. Average amount of time-delay was about 190(msec) for round trip, and varying between 175(msec) and 275(msec). Moreover some data packet was lost during the communication due to UDP data communication. Even under the serious time-varying delay and packet loss communication condition, the proposed approach can achieve stable teleoperation in free motion and hard contact as well.

Observer Based Output Feedback Control for Time-Delay Systems (시간지연 시스템의 관측기 기반의 출력 피드백 제어)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.48-52
    • /
    • 2011
  • This paper presents the observer based output feedback control design for linear systems which have both input and output time delay. Sufficient conditions for existence of stabilizing output feedback controller are characterized by linear matrix inequalities. Since the condition of the proposed design depends on the value of time delay, it is less conservative than existing delay-independent approaches. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Output Feedback Consensus of High-order Integrators with a Communication Delay (통신 지연을 갖는 고차 적분기시스템의 출력 피드백 일치)

  • Lee, Sungryul
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.378-384
    • /
    • 2016
  • This paper addresses the output feedback consensus problem for high-order integrators under a directed network with a communication delay. In order to solve this problem, the dynamic output feedback controller is proposed. Also, by using Lyapunov-Krasovskii functional, it is shown that the existence of the proposed consensus controller can always be guaranteed even in the presence of an arbitrarily large communication delay.

Stability Analysis of Time Delay Controller for General Plants (일반적인 플랜트에 대한 시간지연을 이용한 제어기법의 안정성 해석)

  • Kwon, Oh-Seok;Chang, Pyung-Hun;Jung, Je-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1035-1046
    • /
    • 2002
  • Time Delay Control(TDC) is a robust nonlinear control scheme using Time Delay Estimation(TDE) and also has a simple structure. To apply TDC to a real system, we must design Time Delay Controller to guarantee stability. The earlier research stated sufficient stability condition of TDC for general plants. In that research, it was assumed that time delay is infinitely small. But, it is impossible to implement infinitely small time delay in a real system. So, in this research we propose a new sufficient stability condition of TDC for general plants with finite time delay. And the simulation results indicate that the previous sufficient stability condition does not work even for small time delay, while our proposed condition works well.

Real-Time Haptic Rendering for Tele-operation with Varying Communication Time Delay (가변적인 통신지연시간을 갖는 원격 작업 환경을 위한 실시간 햅틱 렌더링)

  • Lee, K.;Chung, S.Y.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2009
  • This paper presents a real-time haptic rendering method for a realistic force feedback in a remote environment with varying communication time-delay. The remote environment is assumed as a virtual environment based on a computer graphics, for example, on-line shopping mall, internet game and cyber-education. The properties of a virtual object such as stiffness and viscosity are assumed to be unknown because they are changed according to the contact position and/or a penetrated depth into the object. The DARMAX model based output estimator is proposed to trace the correct impedance of the virtual object in real-time. The output estimator is developed on the input-output relationship. It can trace the varying impedance in real-time by virtue of P-matrix resetting algorithm. And the estimator can trace the correct impedance by using a white noise that prevents the biased input-output information. Realistic output forces are generated in real-time, by using the inputs and the estimated impedance, even though the communication time delay and the impedance of the virtual object are unknown and changed. The generated forces trace the analytical forces computed from the virtual model of the remote environment. Performance is demonstrated by experiments with a 1-dof haptic device and a spring-damper-based virtual model.

  • PDF