• Title/Summary/Keyword: outer shell

Search Result 202, Processing Time 0.028 seconds

Hydrogen-Bonding Induced Alternating Thin Films of Dendrimer and Block Copolymer Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Im, Min-Ju;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.688-692
    • /
    • 2007
  • The hydrogen-bonding induced alternating multilayer thin films of dendrimers and block copolymer micelles were demonstrated. The block copolymer micelles derived from amphiphilic poly(2-ethyl-2-oxazoline)block-$poly({\varepsilon}-carprolactone)$ (PEtOz-PCL) in aqueous phase have a core-shell structure with a mean hydrodynamic diameter of 26 nm. The hydrogen bonding between the PEtOz outer shell of micelle and the carboxyl unit of poly(amidoamine) dendrimer of generation 4.5 (PAMAM-4.5G) at pH 3 was utilized as a driving force for the layerby-layer alternating deposition. The multilayer thin film was fabricated on the poly(methyl methacrylate) (PMMA) thin film spin-coated on silicon wafer or glass substrate by the alternate dipping of PEtOz-PCL micelles and PAMAM dendrimers in aqueous solution at pH 3. The formation of multilayer thin film was characterized by using ellipsometry, UV-vis spectroscopy, and atomic force microscopy. The PEtOz outer shell of PEtOz-PCL micelle provided the pH-responsive hydrogen bonding sites with peripheral carboxylic acids of PAM AM dendrimer. The multilayer thin film was reversibly removed after dipping in aqueous solution at $pH{\geq}5.6$ due to dissociation of the hydrogen bonding between PEtOz shell of PEtOz-PCL micelle and peripheral carboxyl units of PAMAM dendrimer.

High Dispersion Spectra of the Young Planetary Nebula NGC 7027

  • Hyung, Siek;Lee, Seong-Jae;Bok, Jang-Hee
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.419-426
    • /
    • 2015
  • We investigated the high dispersion spectra that had been secured at the center of the planetary nebula NGC 7027 with the Bohyunsan Optical Echelle Spectrograph (BOES) on October, 20, 2009. We analyzed the forbidden lines of [OI], [SII], [OII], [NII], [ClIII], [ArIII], [OIII], [ArIV], [NeIII], [ArV], and [CaV] in the $3770-9225{\AA}$ wavelength region. The expansion velocities were derived from double Gaussian line profiles of the emission lines, after eliminating the subsidiary line broadening effects. The radial variations of the expansion velocities were obtained by projecting the derived expansion velocities: $19.56-31.93kms^{-1}$ onto the equatorial shell elements of the inner and the outer boundaries of the main shell of 2.5(2.1)" and 3.8(3.6)", according to the ionization potential of each ion. Analysis of equatorial shell spectra indicated that the equatorial shell generally expands in an accelerated velocity mode, but the expansion pattern deviates from a linear velocity growth with radial distance. NGC 7027, of which age is about 1000 years or less, might be still at its early stage. During the first few hundred years, plausibly in its early stage, the main shell of PN expands very slowly and, later, it gradually gain its normal expansion speed.

A Study on Heat Transfer in Sand Molds (사형(砂型)의 열전달(熱傳達)에 관(關)한 연구(硏究))

  • Lee, Jong-Nam;Kim, Kwang-Bea
    • Journal of Korea Foundry Society
    • /
    • v.2 no.1
    • /
    • pp.2-11
    • /
    • 1982
  • In order to investigate the relationship between the thermal characteristics of the various molds as green sand mold, dry sand mold, $CO_2$ mold and shell mold, and the solidification characteristics of molten metal, the thermal analysis of rarious molds and melt were performed. The structure of Al-Castings was a/so observed. Results obtained in this experiment were as follows : 1) The heating rate of the molds was increased in the order of green sand mold, $CO_2$ mold, dry sand mold and shell mold, On the other hand the solidification time of the melts was shortened in the order of dry sand mold castings, $CO_2$ mold castings, green sand mold castings and shell mold castings. 2) The arrest temperature period in the heating curve of the green sand mold was resulted from the eraporation of moisture contained in mold, which was transfered to the outer side of the mold. 3) The temperature fluctuation of the melt in the shell mold was considered to be resulted from the combution heat of resin contained in the mold. 4) The amounts of heat absorption of the molds were increased in the order of dry sand mold, $CO_2$ mold, green sand mold and shell mold. 5) The higher the solidification rate was, the longer was its shrinkage pipe and the finer its grain size.

  • PDF

Age and Growth of Purpulish Washington Clam (Saxidomus purpuratus) in Jinhae Bay, Korea (진해만에 분포하는 개조개 (Saxidomus purpuratus)의 연령과 성장)

  • KIM Yeong Hye;RYU Dong Ki;CHANG Dae Soo;KIM Jong Bin;KIM Seong Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.5
    • /
    • pp.495-499
    • /
    • 2003
  • Age and growth of purpulish Washington clam (Saxidomus purpuratus) was investigated from 480 samples monthly collected from January to December 2002 in Jinhae Bay, Korea. Examination of outer margins of the shell revealed that the translucent zone was formed once a year from March to April, it can be used as annulus. Ages were determined from ring radius of shell, and maximum age of the the clam was 9 years. The spawning period was from May to October, and the main spawning occurred in July. The relationship between shell length (SL) and shell height (SH) was $SH=0.8405{\times}SL^{-4.9709}\;(R^2=0.97)$ and that between the shell length (SL) and total weight (TW) was $TW=0.9580{\times}10-4{\times}SL^{3.220}(R^2=0.97).$ The von Bertalanffy growth equation were $SL_t=125.57(1-e^{-0.2523(t+0.5367)},\;TW_t=549.26(1-e^{-0.2523(t+0.5367)})^{3.220}.$

Correlation between Physicochemical Properties and Peeling Ratio of Korean Chestnut (밤 내피 및 외피의 이화학적 특성 및 박피율과의 상관분석)

  • Hwang, Ja-Young
    • Korean journal of food and cookery science
    • /
    • v.33 no.2
    • /
    • pp.190-197
    • /
    • 2017
  • Purpose: The purpose of this paper was to analyze the physicochemical properties related to peeling rate of Korean chestnut. Methods: Analyses were carried out for weight, thickness, polyphenol, amino acid and peeling ratio for Korean chestnut. The correlation between these physicochemical components and peeling ratio of chestnut was measured. Results: The average of thickness for inner shell and outer shell was 0.66 mm and 0.93 mm, respectively. The average peeling ratio was 77.51%. A significant negative correlation was found between peeling ratio and thickness of the inner shell ($r=-0.80^{***}$, p<0.001). Analysis for the polyphenol composition of inner shell by HPLC was carried out and peaks 2 ($r=-0.56^*$, p<0.05), 11 ($r=-0.68^{**}$, p<0.01), 14 ($r=-0.52^*$, p<0.05), 28 ($r=-0.66^{**}$, p<0.01) showed a significant negative correlation with the peeling ratio. Conclusion: Thickness of chestnut inner shell was determined as the most influential factors of peeling.

Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator

  • Rostami, Rasoul;Mohamadimehr, Mehdi;Rahaghi, Mohsen Irani
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.225-237
    • /
    • 2019
  • In this research, the dynamic stability and nonlinear vibration behavior of a smart rotating sandwich cylindrical shell is studied. The core of the structure is a functionally graded material (FGM) which is integrated by functionally graded piezoelectric material (FGPM) layers subjected to electric field. The piezoelectric layers at the inner and outer surfaces used as actuator and sensor, respectively. By applying the energy method and Hamilton's principle, the governing equations of sandwich cylindrical shell derived based on first-order shear deformation theory (FSDT). The Galerkin method is used to discriminate the motion equations and the equations are converted to the form of the ordinary differential equations in terms of time. The perturbation method is employed to find the relation between nonlinear frequency and the amplitude of vibration. The main objective of this research is to determine the nonlinear frequencies and nonlinear vibration control by using sensor and actuator layers. The effects of geometrical parameters, power law index of core, sensor and actuator layers, angular velocity and scale transformation parameter on nonlinear frequency-amplitude response diagram and dynamic stability of sandwich cylindrical shell are investigated. The results of this research can be used to design and vibration control of rotating systems in various industries such as aircraft, biomechanics and automobile manufacturing.

Actual fatigue reliability of structural material: Vibration efficiency

  • Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Alshoaibi, Adil;Loukil, Hassen;Alsoruji, Ghazi;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.327-337
    • /
    • 2022
  • This paper is concerned with the vibration analysis of middle layer cylindrical shell made of functionally graded material. The outer layers and inner layer are composed of functionally graded and isotropic material respectively. The Rayleigh Ritz method is applied to solve the presented shell dynamics equations. Two configurations are constructed with layers distributions. Fundamental natural frequencies of the three layered cylindrical shell is plotted against the circumferential wave number with different power law exponents. The frequency decreases with the increase of power law exponent. The fundamental natural frequencies first decreases and fall down to its minimum value, after frequencies increases with circumferential wave number. This is due to change in the magnitude of extensional and bending energies of the cylindrical shells. The computer software MATLAB has been employed for the computation of presented frequencies and tested the results obtained in order to assess the accuracy and validity of the cylindrical shell model for predicting the vibration frequencies of cylindrical shell.

Automatic Generation of Hexahedral Meshes in Shell Structures (쉘 구조물에서 육면체 요소망의 자동 생성)

  • Lee B.C.;Chae S.W.;Kwon K.Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • This paper describes hexahedral mesh generation for various shell structures, such as automobile bodies, plastic injection mold components and sheet metal parts by using chordal surfaces. After generaling one-layered tetrahedral mesh by an advancing front algorithm, the chordal surfaces are constructed by cutting of tetrahedral elements. Since the choral surfaces are composed of tri/quad elements with poor quality, they are transformed into quadrilateral elements with good quality. Hexahedral elements are then generated by offsetting these quadrilateral elements. The boundary nodes of hexahedral elements are generated on the outer surfaces of the original shell structures. Sample models including nonuniform thickness have been tested to validate the proposed algorithm.

Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.69-82
    • /
    • 2020
  • In this paper, a new explicit analytical formula is derived for the critical buckling load of Double Walled Carbon Nanotubes (DWCNTs) embedded in Winkler elastic medium without taking into account the effects of the nonlocal parameter, which indicates the effects of the surrounding elastic matrix combined with the intertube Van der Waals (VdW) forces. Furthermore, we present a model which predicts that the critical axial buckling load embedded in Winkler, Pasternak or Kerr elastic medium under axial compression using the nonlocal Donnell shell theory, this model takes into account the effects of internal small length scale and the VdW interactions between the inner and outer nanotubes. The present model predicts that the critical axial buckling load of embedded DWCNTs is greater than that without medium under identical conditions and parameters. We can conclude that the embedded DWCNTs are less susceptible to axial buckling than those without medium.

THE DYNAMICS OF STELLAR WINDS: THEIR STRUCTURES AND [OIII] LINE FORMATION

  • CHA SEUNG-HOON;LEE YOUNG-JIN;CHOE SEUNG-URN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.253-254
    • /
    • 1996
  • To understand the dynamical structures of stellar wind bubble, one and two-dimensional calculations has been performed. Using FCT Code with cooling effects and assuming constant mass loss rate and ambient medium density, we could divide stellar winds into the regime of slow and fast winds. The slow wind driven bubble shows initially radiative and becomes partially radiative bubble in which shocked stellar wind zone is still adiabatic. In contrast., the fast wind driven bubble shows initially fully adiabatic and becomes adiabatic bubbles with radiative outer shell. We also determine analytically the onset of thin-shell formation time in case of fast wind driven bubble with power-law energy injection and ambient density structure. We solve the line transfer problem with numerical results in order to calculate line profile of [OIII] forbidden line.

  • PDF