Browse > Article
http://dx.doi.org/10.12989/anr.2020.9.2.069

Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory  

Timesli, Abdelaziz (Hassan II University of Casablanca, National Higher School of Arts and Crafts of Casablanca (ENSAM Casablanca), Laboratory of Structural Engineering, Intelligent Systems and Electrical Energy)
Publication Information
Advances in nano research / v.9, no.2, 2020 , pp. 69-82 More about this Journal
Abstract
In this paper, a new explicit analytical formula is derived for the critical buckling load of Double Walled Carbon Nanotubes (DWCNTs) embedded in Winkler elastic medium without taking into account the effects of the nonlocal parameter, which indicates the effects of the surrounding elastic matrix combined with the intertube Van der Waals (VdW) forces. Furthermore, we present a model which predicts that the critical axial buckling load embedded in Winkler, Pasternak or Kerr elastic medium under axial compression using the nonlocal Donnell shell theory, this model takes into account the effects of internal small length scale and the VdW interactions between the inner and outer nanotubes. The present model predicts that the critical axial buckling load of embedded DWCNTs is greater than that without medium under identical conditions and parameters. We can conclude that the embedded DWCNTs are less susceptible to axial buckling than those without medium.
Keywords
buckling; Double Walled Carbon Nanotubes (DWCNTs); elastic medium; Van der Waals (VdW) interaction; axial compression; small scale effect; nonlocal elasticity theory; Donnell shell theory;
Citations & Related Records
Times Cited By KSCI : 39  (Citation Analysis)
연도 인용수 순위
1 Bousahla, A.A., Bourada, F, Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first sheard eformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
2 Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi A.W., Tounsi, A.D. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
3 Bower, C., Rosen, R., Jin, L., Han, J. and Zhou, O. (1999), "Deformation of carbon nanotubes in nanotube-polymer composites", Appl. Phys. Lett., 74(22), 3317-3319. https://doi.org/10.1063/1.123330.   DOI
4 Brush, D. and Almroth, B. (1975), Buckling of Bars, Plates and Shells, McGraw-Hill, New York, USA.
5 Ranjbartoreh, A.R., Ghorbanpour, A. and Soltani, B. (2007), "Double-walled carbon nanotube with surrounding elastic medium under axial pressure", Physica E Low Dimens. Syst. Nanostruct., 39(2), 230-239. https://doi.org/10.1016/j.physe.2007.04.010.   DOI
6 Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A.J., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, Int. J., 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
7 Ru, C.Q. (2001), "Axially compressed buckling of a double walled carbon nanotube embedded in an elastic medium", J. Mech. Phys. Solids, 49(6), 1265-1279. https://doi.org/10.1016/S0022-5096(00)00079-X.   DOI
8 Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69(3), 255-260. https://doi.org/10.1007/s003390050999.   DOI
9 Zaouia, F.Z., Ouinasa, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B Eng., 159, 231-247. https://doi.org/10.1177/1099636217727577.   DOI
10 Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
11 Calvert, P. (1999), "A recipe for strength", Nature, 399(6733), 210-211. https://doi.org/10.1038/20326.   DOI
12 Chaabane, L.A., Bourad a, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A.M., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., Int. J., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
13 Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. http://dx.doi.org/10.12989/anr.2015.3.4.193.   DOI
14 Chemi, A., Zidour, M., Heireche, H., Rakr ak, K. and Bousahla, A.A. (2018), "Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium", Mech. Compos. Mater., 53, 827-836. https://doi.org/10.1007/s11029-018-9708-x.   DOI
15 Karami, B., Janghorban, M. and Tounsi, A. (2019), "On prestressed functionally graded anisotropic nanoshell in magnetic field", J. Braz. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.   DOI
16 Jena, S.K., Chakraverty, S. and Malikan, M. (2020a), "Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier's technique for vibration analysis of a function ally graded porous beam embedded in Kerr foundation", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01018-7.
17 Jena, S.K., Chakraverty, S. and Malikan, M. (2020b), "Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory : an analytical approach", Eur. Phys. J. Plus, 135, 164. https://doi.org/10.1140/epjp/s13360-020-00176-3.   DOI
18 Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural beh aviour of functionally graded porous plates on elastic foundation using a new qu asi-3D model: Bend ing and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
19 Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of function ally graded anisotropic nanop lates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
20 Karami, B., Janghorban, M., Shahsavari, D., Tounsi, A. (2018), "A size-depend ent quasi-3D model for wave dispersion analysis of FG nanoplates", Int. J. Steel Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
21 Kerr, A.D. (1965), "A study of a new foundation model", Acta Mechanica, 1, 135-147. https://doi.org/10.1007/BF01174308.   DOI
22 Schadler, L.S., Giannaris, S.C. and Ajayan, P.M. (2018), "Load transfer in carbon nanotubes epoxy composites", Appl. Phys. Lett., 73(26), 3842-3844. https://doi.org/10.1063/1.122911.   DOI
23 Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling an alysis of SWBNNT on Winkler foundation by non-local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
24 Zhanga, Y.Q., Liu, G.R., Qiang, H.F. and Li, G.Y. (2006), "Investigation of buckling of double-walled carbon nanotubes embedded in an elastic medium using the energy method", Int. J. Mech. Sci., 48(1), 53-61. https://doi.org/10.1016/j.ijmecsci.2005.09.010.   DOI
25 Zhou, L., Cheny, F. and Zhao, Z. (2019), "Subharmonic bifurcation and chaos of a carbon nanotube supported by a Winkler and Pasternak foundation", Int. J. Mod. Phys. B, 33(19), 1950207. https://doi.org/10.1142/S0217979219502072.   DOI
26 Donnell, L.H. (1934), "Stability of thin-walled tubes under torsion", N.A.S.A. Technical Report No. 479, Washington D.C., USA.
27 Kiani, K. (2015), "Axial buckling scrutiny of doubly orthogonal slender nanotubes via non local con tinuum theory", J. Mech. Sci. Technol., 29, 4267-4272. https://doi.org/10.1007/s12206-015-0923-2.   DOI
28 Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Inf luences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, Int. J., 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
29 Alimirzaei, S., Mohammad imehr, M. and Tounsi, A. (2019), "Nonlinear analysis of visco elastic micro-composite beam with geometr ical imperf ection using FEM: MSGT electro-magneto-elastic bend ing, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
30 Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng. Int. J., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
31 Draoui, A., Zidour, A., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using FSDT", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.   DOI
32 Elishakoff, I. and Bucas, S. (2013), "Buckling of a clamp ed-free double-walled carbon nano tube by the Bubnov-Galerkin method", J. Appl. Mech., 80(1), 011004. https://doi.org/10.1115/1.4006937.   DOI
33 Lu, J.M., Wang, Y.C., Chang, J.C., Su, M.H. and Hwang, C.C. (2007a), "Molecular-dyn amic investigation of buckling of double-walled carbon nanotubes under uniaxial compression", J. Phys. Soc. Japan, 77(4), 044603. https://doi.org/10.1143/JPSJ.77.044603.   DOI
34 Kuzumaki, T., Miyazawa, K., Ichinose, H. and Ito, K. (1998), "Processing of carbon nanotube reinforced aluminum composites", J. Mater. Res., 13(9), 2445-2449. https://doi.org/10.1557/JMR.1998.0340.   DOI
35 Lourie, O. and Wagner, H.D. (1998), "Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy", J. Mater. Res., 13(9), 2418-2422. https://doi.org/10.1557/JMR.1998.0336.   DOI
36 Lourie, O., Cox, D.M. and Wagner, H.D. (1998), "Buckling and collapse of embedded carbon nanotubes", Phys. Rev. Lett., 81, 1638-1641. https://doi.org/10.1103/PhysRevLett.81.1638.   DOI
37 Lu, W.B., Wu, J., Feng, X., Hwang, K.C. and Huang, Y. (2007b), "Buckling an alyses of double-wall carbon nanotubes: a shell theory based on the interatomic potential", J. Appl. Mech., 77(6), 061016. https://doi.org/10.1115/1.4001286.
38 Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.   DOI
39 Malikan, M. (2020), "On the plastic buckling of curved carbon nanotubes", Theor. Appl. Mech. Lett., 10(1), 46-56. https://doi.org/10.1016/j.taml.2020.01.004.   DOI
40 Shahsavari, D., Karami, B. and Mansouri, S. (2018), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on d ifferent nonlocal strain gradient theories", Eur. J. Mech. A Solids, 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004.   DOI
41 Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved can tilevered microtubule by considering viscoelastic properties", Eng. Comput. [In press] https://doi.org/10.1007/s00366-020-01024-9.
42 Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, Int. J., 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245
43 Teifouet, M., Robinson, A. and Adali, S. (2018), "Buckling of nonuniform and axially functionally graded nonlocal Timoshenko nanobeams on Winkler-Pasternak foundation", Compos. Struct., 206, 95-103. https://doi.org/10.1016/j.compstruct.2018.07.046.   DOI
44 Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the non local Donnell shell theory ", SN Appl. Sci., 2(3), 1-12. https://doi.org/10.1007/s42452-020-2182-9.   DOI
45 Timesli, A., Braikat, B., Jamal, M. and Damil, N. (2017), "Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression", Comptes Rendus Mecanique, 345(2), 158-168. https://doi.org/10.1016/j.crme.2016.12.002.   DOI
46 Zhang, P., Lammert, P.E. and Crespi, V.H. (1998), "Plastic deformations of carbon nanotubes", Phys. Rev. B, 81, 5346-5349. https://doi.org/10.1103/PhysRevLett.81.5346.
47 Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: vibr ation analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
48 Balubaid, M., Tounsi, A., Dakhel, B., Mahmoud, S.R. (2019), "Free vibration inv estigation of FG nanoscale plate using nonlocal two var iables integral refin ed plate theory ", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
49 Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.   DOI
50 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
51 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
52 Eringen, A.C. and Edelen, D.G.B. (2005), "Design procedures for Installation of suction caissons in clay and other materials", Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 158(2), 75-82. https://doi.org/10.1680/geng.2005.158.2.75.   DOI
53 Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V. and Brooks, F.P. (1997), "Bending and buckling of carbon nanotubes under large strain", Nature, 389(6651), 582-584. https://doi.org/10.1038/39282.   DOI
54 Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buck ling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2.
55 Malikan, M. and Eremeyev, V.A. (2020), "Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a non linear Winkler substrate using the Rayleigh-Ritz method", Mater. Res. Express, 7(2), 025005. https://doi.org/10.1088/2053-1591/ab691c.
56 Malikan, M., Nguyen, V.B. and Tornabene, F. (2018), "Damped forced vibration an alysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory", Eng. Sci. Technol., Int. J., 21(4), 778-786. https://doi.org/10.1016/j.jestch.2018.06.001.
57 Malikan, M., Dimitri, R. and Tornabene, F. (2019 a), "Transient response of oscillated carbon nanotubes with an internal and external damping", Compos. Part B Eng., 158, 198-205. https://doi.org/10.1016/j.compositesb.2018.09.092.   DOI
58 Malikan, M., Nguyen, V.B., Dimitri, R. and Torn abene, F. (2019b), "Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory", Mater. Res. Express, 6(7), 075041. https://doi.org/10.1088/2053-1591/ab15ff.   DOI
59 Medani, M., Benahmed, A., Zidour, A., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
60 Bao, W.X., Zhu, C.C. and Cu i, W.Z. (2004), "Simulation of Young's modulus of single-walled carbon n anotubes by molecu lar dynamics", Physica B Cond ens. Matter, 352(1-4), 156-163. https://doi.org/10.1016/j.physb.2004.07.005.   DOI
61 Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for b ending and bu ckling analysis of a nonlocal str ain grad ient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.   DOI
62 Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A.J., Bourada, F., Mahmoud, S.R., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., Int. J., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
63 Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouad ji, T.M. (2018), "Critical buck ling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
64 Bernholc, J., Brabec, C., Nardelli, B.M., Maiti, A., Roland, C. and Yakobson, B.I. (1998), "Theory of growth and mechanical properties of nanotubes", Appl. Phys. A, 67, 39-46. https://doi.org/10.1007/s003390050735.   DOI
65 Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0.   DOI
66 Gul, U. and Aydogdu, M. (2018), "Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics", Compos. Part B Eng., 137, 60-73. https://doi.org/10.1016/j.compositesb.2017.11.005.   DOI
67 He, X.Q., Kitipornchai, S. and Liew, K.M. (2005), "Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der waals in teraction ", J. Mech. Phys. Solids, 53(2), 303-326. https://doi.org/10.1016/j.jmps.2004.08.003.   DOI
68 Mohammadimehr, M., Saidi, A.R., Arani, A.G., Arefmanesh, A. and Han, Q. (2011), "Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(2), 498-506. https://doi.org/10.1177/2041298310392861.   DOI
69 Nardelli, M.B, Yakobson, B.I. and Bernholc, J. (1998), "Brittle and ductile behavior in carbon nanotubes", Phys. Rev. Lett., 81, 4656-4659. https://doi.org/10.1103/PhysRevLett.81.4656.   DOI
70 Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., Int. J., 34(4), 511-524. http://dx.doi.org/10.12989/scs.2020.34.4.511.
71 Tu, Z.C. and Ou-Yang, Z.C. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's modulus dependent on layer number", Phys. Rev. B, 65(23), 233407. https://doi.org/10.1103/PhysRevB.65.233407.   DOI
72 Wagner, H.D., Lourie, O., Feldman, Y. and Tenne, R. (1998), "Stress induced fragmentation of multi-wall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188. https://doi.org/10.1063/1.120680.   DOI
73 Wang, C.M. and Maa, Y.Q. (2006), "Buckling of double-walled carbon nanotubes modeled by solid shell elements", J. Appl. Phys., 99(11), 114317. https://doi.org/10.1063/1.2202108.   DOI
74 Winkler, E. (1867), "Die Lehre von Elastizitat und Festigk eit (on Elasticity and Fixity)", Dominicus, Prague.
75 Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics elasticity, strength, and toughness of nanorods and nanotubes", Science, 277(5334), 1971-1975. https://doi.org/10.1126/science.277.5334.1971.   DOI
76 Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of function ally graded microbeam", Struct. Eng. Mech., Int. J., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
77 Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int. J., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
78 Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A, Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., Int. J., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
79 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armch air and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.   DOI
80 Hedayati, H. and Sobhani Aragh, B. (2012), "Influence of graded agglomer ated CNTs on vibration of CNT-reinforced annular sectorial plates resting on Pasternak foundation", Appl. Math. Comput., 218(17), 8715-8735. https://doi.org/10.1016/j.amc.2012.01.080.   DOI
81 Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020), "Simulating vibrations of vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., Int. J., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.   DOI
82 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.   DOI
83 Iijima, S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104, 2089-2092. https://doi.org/10.1063/1.470966.   DOI
84 Jena, S.K., Chakraverty, S., Malikan, M. and Torn abene, F. (2019), "Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory", Mech. Based Des. Struct. Mach., 1-15. https://doi.org/10.1080/15397734.2019.1698437.
85 Rahmanian, M., Torkaman-Asadi, M.A., Firouz-Abadi, R.D. and Kouchakzadeh, M.A. (2016), "Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models", Physica B Condens. Matter, 484, 83-94. https://doi.org/10.1016/j.physb.2015.12.041.   DOI
86 Pasternak, P. L. (1954), On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, Moscow, Russia.
87 Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870. https://doi.org/10.1063/1.126500.   DOI
88 Rahmani, R. and Antonov, M. (2019), "Axial and torsional buckling analysis of single- and multi-walled carbon nanotubes: finite element comparison between armchair and zigzag types", SN Appl. Sci., 1(9), 1134. https://doi.org/10.1007/s42452-019-1190-0.   DOI
89 Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration an alysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.
90 Wu, Y., Zhang, X., Leunga, A.Y.T. and Zhong, W. (2006), "An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes", Thin Wall. Struct., 44(6), 667-676. https://doi.org/10.1016/j.tws.2006.05.003.   DOI
91 Xie, B., Li, Q., Zeng, K, Sahmani, S. and Madyira, D.M. (2020), "Instability analysis of silicon cylindrical nanoshells under axial compressive load using molecular dynamics simulations", Microsyst. Technol., 1-12. https://doi.org/10.1007/s00542-020-04851-4.
92 Yacobson, B.I., Brabec, C.J. and Bernhole, J. (1996), "Nanomechanics of carbon nanotubes: instabilities beyond linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org 10.1103/PhysRevLett.76.2511.   DOI
93 Yakobson, B.I. and Smalley, R.E. (1997), "Fullerene nanotubes: C1000000 and beyond", Am. Sci., 85(4), 324-337. https://www.jstor.org/stable/27856810.
94 Yao, N. and Lordi, V. (1998), "Young's modulus of single-walled carbon nanotubes", J. Appl. Phys., 84(4), 1939. https://doi.org/10.1063/1.368323.   DOI
95 Yao, X. and Han, Q. (2007), "The thermal effect on axially compressed buckling of a double-walled carbon nanotube", Eur. J. Mech. A Solids, 26(2), 298-312. https://doi.org/10.1016/j.euromechsol.2006.05.009.   DOI