Hydrogen-Bonding Induced Alternating Thin Films of Dendrimer and Block Copolymer Micelle

  • Park, Chi-Young (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Research Center, Inha University) ;
  • Rhue, Mi-Kyo (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Research Center, Inha University) ;
  • Im, Min-Ju (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Research Center, Inha University) ;
  • Kim, Chul-Hee (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Research Center, Inha University)
  • Published : 2007.12.31

Abstract

The hydrogen-bonding induced alternating multilayer thin films of dendrimers and block copolymer micelles were demonstrated. The block copolymer micelles derived from amphiphilic poly(2-ethyl-2-oxazoline)block-$poly({\varepsilon}-carprolactone)$ (PEtOz-PCL) in aqueous phase have a core-shell structure with a mean hydrodynamic diameter of 26 nm. The hydrogen bonding between the PEtOz outer shell of micelle and the carboxyl unit of poly(amidoamine) dendrimer of generation 4.5 (PAMAM-4.5G) at pH 3 was utilized as a driving force for the layerby-layer alternating deposition. The multilayer thin film was fabricated on the poly(methyl methacrylate) (PMMA) thin film spin-coated on silicon wafer or glass substrate by the alternate dipping of PEtOz-PCL micelles and PAMAM dendrimers in aqueous solution at pH 3. The formation of multilayer thin film was characterized by using ellipsometry, UV-vis spectroscopy, and atomic force microscopy. The PEtOz outer shell of PEtOz-PCL micelle provided the pH-responsive hydrogen bonding sites with peripheral carboxylic acids of PAM AM dendrimer. The multilayer thin film was reversibly removed after dipping in aqueous solution at $pH{\geq}5.6$ due to dissociation of the hydrogen bonding between PEtOz shell of PEtOz-PCL micelle and peripheral carboxyl units of PAMAM dendrimer.

Keywords

References

  1. P. T. Hammond, Adv. Mater., 16, 1271 (2004) https://doi.org/10.1002/adma.200400760
  2. G. Decher, Science, 277, 1232 (1997)
  3. X. Zhang and J. C. Shen, Adv. Mater., 11, 1139 (1999)
  4. P. J. Yoo, K. T. Nam, J. Qi, S. -K. Lee, J. Park, A. M. Belcher, and P. T. Hammond, Nature Mater., 5, 234 (2006) https://doi.org/10.1038/nmat1596
  5. G. Kumaraswamy, A. M. Dibaj, and F. Caruso, Langmuir, 18, 4150 (2002)
  6. K. T. Nam, D. -W. Kim, P. J. Yoo, C.-Y. Chiang, N. Meethong, P. T. Hammond, Y.-M. Chiang, and A. M. Belcher, Science, 312, 885 (2006) https://doi.org/10.1126/science.1122716
  7. J. A. Hiller, J. D. Mendelsohn, and M. F. Rubner, Nature Mater., 1, 59 (2002) https://doi.org/10.1038/nmat723
  8. E. Vazquez, D. M. Dewitt, P. T. Hammond, and D. M. Lynn, J. Am. Chem. Soc., 124, 13992 (2002)
  9. K. C. Wood, J. Q. Boedicker, D. M. Lynn, and P. T. Hammond, Langmuir, 21, 1603 (2005) https://doi.org/10.1021/la0476480
  10. K. C. Wood, H. F. Chuang, R. D. Batten, D. M. Lynn, and P. T. Hammond, Proc. Natl. Acad. Sci. USA, 103, 10207 (2006)
  11. N. Jessel, M. Oulad-Abdelghani, F. Meyer, P. Lavalle, Y. Haikel, P. Schaaf, and J.-C. Voegel, Proc. Natl. Acad. Sci. USA, 103, 8618 (2006)
  12. R. van Heerbeek, P. C. J. Kamer, P. W. N. M. van Leeuwen, and J. N. H. Reek, Chem. Rev., 102, 3717 (2002)
  13. J. M. J. Frechet, Proc. Natl. Acad. Sci. U.S.A., 99, 4787 (2002)
  14. S. C. Zimmerman and L. J. Lawless, Top. Curr. Chem., 217, 95 (2001) https://doi.org/10.1007/3-540-45003-3_3
  15. F. Zeng and S. C. Zimmerman, Chem. Rev., 97, 1681 (1997)
  16. R. M. Crooks, M. Zhao, L. Sun, V. Chechik, and L. K. Yeung, Acc. Chem. Res., 34, 181 (2001) https://doi.org/10.1021/ar000113n
  17. S. Watanabe and S. L. Regen, J. Am. Chem. Soc., 116, 8855 (1994)
  18. M. Zhao, Y. Liu, R. M. Crooks, and D. E. Bergbreiter, J. Am. Chem. Soc., 121, 923 (1999)
  19. G. P. Perez, W. G. Yelton, R. W. Cernosek, R. J. Simonson, and R. M. Crooks, Anal. Chem., 75, 3625 (2003) https://doi.org/10.1021/ac0264473
  20. V. V. Tsukruk, Adv. Mater., 10, 253 (1998)
  21. K. L. Genson, J. Holzmueller, I. Leshchiner, E. Agina, N. Boiko, V. P. Shibaev, and V. V. Tsukruk, Macromolecules, 38, 8028 (2005) https://doi.org/10.1021/ma050304b
  22. K. Emoto, M. Iijima, Y. Nagasaki, and K. Kataoka, J. Am. Chem. Soc., 122, 2653 (2000)
  23. N. Ma, H. Zhang, B. Song, Z. Wang, and X. Zhang, Chem. Mater., 17, 5065 (2005) https://doi.org/10.1021/cm051221c
  24. R. D. Bennett, A. J. Hart, A. C. Miller, P. T. Hammond, D. J. Irvine, and R. E. Cohen, Langmuir, 22, 8273 (2006) https://doi.org/10.1021/la061054a
  25. J. -A. He, R. Valluzzi, K. Yang, T. Dolukhanyan, C. Sung, J. Kumar, S. K. Tripathy, L. Samuelson, L. Balogh, and D. A. Tomalia, Chem. Mater., 11, 3268 (1999)
  26. C. A. Nijhuis, J. Huskens, and D. N. Reinhoudt, J. Am. Chem. Soc., 126, 12266 (2004) https://doi.org/10.1021/ja048271n
  27. H. Zhang, Y. Fu, D. Wang, L. Wang, Z. Wang, and X. Zhang, Langmuir, 19, 8497 (2003) https://doi.org/10.1021/la035036u
  28. S. C. Lee, Y. Chang, J. -S. Yoon, C. Kim, I. C. Kwon, Y. -H. Kim, and S. Y. J eong, Macromolecules, 32, 1847 (1999)
  29. C. Kim, S. C. Lee, S. W. Kang, I. C. Kwon, and S. Y. Jeong, J. Polym. Sci.; Part B: Polym. Phys., 38, 2400 (2000)
  30. C. Kim, S. C. Lee, J. H. Shin, J. -S. Yoon, I. C. Kwon, and S. Y. Jeong, Macromolecules, 33, 7448 (2000)
  31. C. Kim, S. C. Lee, I. C. Kwon, H. Chung, and S. Y. J eong, Macromolecules, 35, 193 (2002) https://doi.org/10.1021/ma011278u
  32. S. C. Lee, C. Kim, I. C. Kwon, H. Chung, and S. Y. Jeong, J. Control. Release, 89, 437 (2003) https://doi.org/10.1016/S0168-3659(03)00162-7