• Title/Summary/Keyword: outer frame

Search Result 136, Processing Time 0.026 seconds

The Structural Design of "China Zun" Tower, Beijing

  • Liu, Peng;Cheng, Yu;Zhu, Yan-Song
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.213-220
    • /
    • 2016
  • The "China Zun" tower in Beijing will rise to 528 meters in height and will be the tallest building in Beijing once built. Inspired by an ancient Chinese vessel, the "Zun", the plan dimensions reduce gradually from the bottom of the tower to the waist and then expand again as it rises to form an aesthetically beautiful and unique geometry. To satisfy the structural requirement for seismic and wind resistance, the structure is a dual system composed of a perimeter mega structure made of composite mega columns, mega braces, and belt trusses, and a reinforced-concrete core with steel plate-embedded walls. Advanced parametric design technology is applied to find the most efficient outer-perimeter structure system. The seismic design basically follows a mixed empirical and performance-based methodology that was verified by a shaking table test and other specimen lab tests. The tower is now half-way through its construction.

Experimental Study on the Reduction of Noise Dispersion for HEV Relay (HEV 계전기의 소음분산 저감에 관한 실험적 연구)

  • Kim, Wonjin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.324-330
    • /
    • 2013
  • The dispersion of acoustic noise during the turn-on and turn-off switching of HEV(hybrid electric vehicle) relay was experimentally analyzed to identify the reason for the dispersion of noise level. An effective method was proposed to reduce the dispersion of noise level. First, a method to wrap the side of moving core with a tape was adopted to reduce the transverse vibration. It enabled the moving core to make a consistent motion and reduce the dispersion of noise level from switching operation of relay. Second, the dispersion of noise level from vibration transmission of parts such as the outer frame and yoke caulking part of relay were tested to find out main sources. From this result, it was identified that the yoke caulking part made inconsistent transient vibration and noise dispersion.

A Study on the Affection of Frequency and Displacement for Nonlinear Viscoelastic Bushing Model (비선형 점탄성 부싱모델에 대한 주파수와 변위의 영향에 대한 연구)

  • 이성범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.772-775
    • /
    • 2003
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. A force-displacement relation for bushings is important for multibody dynamics numerical simulations. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from Lianis model and the sinusoidal input was used for Pipkin-Rogers model, and the affection of displacement with frequency change was studied with Pipkin-Rogers model.

  • PDF

A Seismic Design of RC Underground Subway Structure (지중 RC 도시지하철고 구조물의 내진설계)

  • Jeong, Jae-Pyoung;Im, Tong-Won;Lee, Seong-Lo;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.357-362
    • /
    • 2000
  • This Paper presents dynamic analysis of underground R/C Subway Structure, subjected to seismic actions. Earthquakes brought serious damage to RC subway Structure. Foe studying the collapse mechanism of underground RC Subway, seismic of a subway station is simulated in using FEM program ASP2000 of two-dimension based on the path dependent RC elastic model, soil foundation and interfacial models. The shear failure of intermediate vertical columns is founds to be the major cause of the structural collapse. According to FEM simulation of the failure mechanism, it is considered that the RC column would lose axial load carrying capacity after the occurrence of the localized diagonal shear cracks , and sudden failure of the outer frame would be followed. Specially, the shear stress in the middle slab reaches maximum shear capacity. So, the Structure would fail in the middle slab as a result of erasing the vertical ground motion computation.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of Waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • Kang, Hyo-Jin;Kwon, Shi-Won;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs, to improve durability of structure. This study separately examined physical and chemical specific of quality liguid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

Try-out and Forming Analysis for a TWB Door Inner Panel (TWB 도어 인너 패널의 트라이아웃과 성형해석)

  • Lee K. S.;Song Y. J.;Kim D. J.;Hahn Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.132-137
    • /
    • 2004
  • In order to reduce automobile parts weight, TWB(Tailored welded blank) forming is widely used in the forming of car panel, such as door inner, side outer panels. In this study, one of the current problems of TWB forming was analyzed, especially for the try-out process of TWB door inner panel without frame. A comparison was made between actual panel measurements and results of forming analysis for formability and springback.

  • PDF

Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach

  • Asghar, Sehar;Naeem, Muhammad N.;Hussain, Muzamal;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.599-613
    • /
    • 2020
  • In this article, free vibration attributes of double-walled carbon nanotubes based on nonlocal elastic shell model have been investigated. For this purpose, a nonlocal Flügge shell model is established to observe the small scale effect. The wave propagation is employed to frame the governing equations as eigenvalue system. The influence of nonlocal parameter subjected to different end supports has been overtly examined. A suitable choice of material properties and nonlocal parameter been focused to analyze the vibration characteristics. The new set of inner and outer tubes radii investigated in detail against aspect ratio and length. The dominance of boundary conditions via nonlocal parameter is shown graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • 강효진;권시원;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liquid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

Structural Performance of Connection element composed of High Performance Fiber Reinforced Cementitious composites and Steel Bars in Brace (브레이스에서 고인성시멘트 복합체와 강봉으로 구성된 접합요소의 구조성능)

  • Lee Young Oh;Yang Il Seung;Han Byung Chan;Park Wan Shin;Yun Hyun Do;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.231-234
    • /
    • 2005
  • Steel braced frames retrofit method has been broadly used due to their effectiveness in both light weight and construction periods. However, steel braced frames retrofit method has difficulties in application on the inner frames of buildings to be retrofitted consequently, there have been demands for the braced frames retrofit method that can be broadly and easily applicable to both inner and outer frames of the buildings. The objective of this study is to develop and evaluate the seismic retrofit method applicable to the inner frame also by dividing the reinforcing frames into three unit. From the cyclic test of specimens, the test results dearly showed that steel brace using HPFRCCs and steel bars ensure the better cyclic compressive performance than the normal braced members.

  • PDF

A Study on the Affection of Frequency and Displacement for Nonlinear Viscoelastic Bushing Model (비선형 점탄성 부싱모델에 대한 주파수와 변위의 영향에 대한 연구)

  • Lee, Seong-Beom
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.474-478
    • /
    • 2004
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. A force-displacement relation for bushings is important for multibody dynamics numerical simulations. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from Lianis model and the sinusoidal input was used for Pipkin-Rogers model, and the affection of displacement with frequency change was studied with Pipkin-Rogers model.

  • PDF