• Title/Summary/Keyword: outer frame

Search Result 137, Processing Time 0.023 seconds

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode (일래스토메릭 부싱의 반경방향모드 비선형 점탄성 모델연구)

  • 이성범;최종근;민제홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.204-209
    • /
    • 2003
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the load applied to the shaft or sleeve and the relative deformation of elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation for elastomeric bushing is important for dynamic numerical simulations. A boundary value problem for the bushing response leads to the load-displacement relation which requires complex calculations. Therefore, by modifying the constitutive equation fur a nonlinear viscoelastic incompressible material developed by Lianis, the data fur the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation for radial response of the bushing. After the load relaxation function for the bushing is obtained from the step displacement control test, Pipkin-Rogers model was developed, Solutions were allowed fur comparison between the results of Modified Lianis model and those of the proposed model. It is shown that the proposed Pipkin-Rogers model is in very good agreement with Modified Lianis model.

A Study of Lianis Model for Elastomeric Bushing in Axial Mode (일래스토메릭 부싱의 축방항모드에 대한 리아니스 모델연구)

  • Lee, Seong-Beom
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • An elastomeric bushing which has been considered in this research is a device used in automotive suspension systems to reduce the forte transmitted iron the wheel to the frame of the vehicle. A bushing is modeled at a hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. Lianis constitutive equation for a nonlinear viscoelastic incompressible material is used to model the elastomeric material of the bushing. It is used to derive a force-displacement relation for axial response of the bushing. The displacement dependent force relaxation function for the bushing is obtained from the ramp displacement control tests with an extrapolation method. This is compared with the exact result obtained from the step displacement control test and the results are in very good agreement.

A Study on the Thermal Performance Analysis of Curtain Wall Office Building Considering the Thermal Bridges (열교부위를 고려한 커튼월 사무소 건물의 열성능 해석에 관한 연구)

  • Shin, U-Cheul;Kim, Seung-Chul;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Currently, office buildings in Korea tend to adopt as their outer wall the curtain wall structure which can be easily constructed and has beautiful external appearance as well. However, the problem is that the curtain wall structure does not have a uniform composition unlike the wall of existing reinforced concrete structures and has a frame made of metal with high heat conduction. Therefore, it is expected that the structure will be highly influenced by the thermal bridge. Thereupon, this study analyzes how to set up the composition of the wall system and heat transmission rate in consideration of the thermal characteristics of the curtain wall structure and applies it in practice by simulation in order to propose a guideline for the energy simulation method of the curtain wall structure and analyze its differences from existing simulation methods.

Performance of the Concatenated System of MTCM Codes with STBC on Fast Rayleigh Fading Channels (빠른 레일리 페이딩채널에서 MTCM 부호와 STBC를 결합한 시스템의 성능평가)

  • Jin, Ik-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.141-148
    • /
    • 2009
  • Space-time block codes (STBC) have no coding gain but they provide a full diversity gain with relatively low encoder/decoder complexity. Therefore, STBC should be concatenated with an outer code which provides an additional coding gain. In this paper, we consider the concatenation of multiple trellis-coded modulation (MTCM) codes with STBC for achieving significant coding gain with full antenna diversity. Using criteria of equal transmit power, spectral efficiency and the number of trellis states, the performance of concatenated scheme is compared to that of previously known space-time trellis codes (STTC) in terms of frame error rate (FER). Simulation results show that MTCM codes concatenated with STBC offer better performance on fast Rayleigh fading channels, than previously known STTC with two transmit antennas and one receive antenna.

  • PDF

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode (일래스토메릭 부싱의 반경방향모드 비선형 점탄성 모델연구)

  • Lee, Seong-Beom
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.415-419
    • /
    • 2003
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the load applied to the shaft or sleeve and the relative deformation of elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation for elastomeric bushing is important for dynamic numerical simulations. A boundary value problem for the bushing response leads to the load-displacement relation which requires complex calculations. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data for the elastomeric bushing material was obtained and this data was used to derive the new load-displacement for radial response of the bushing. After the load relaxation function for the bushing is obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of Modified Lianis model and those of the proposed model. It is shown that the proposed Pipkin-Rogers model is in very good agreement with Modified Lianis model.

  • PDF

An Experimental Study of Pipkin-Rogers Model for Automotive Bushing (자동차 부싱에 대한 Pipkin-Rogers 모델의 실험적 연구)

  • Kim, Sung-Jin;Lee, Su-Young;Lee, Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.118-124
    • /
    • 2005
  • An automotive bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. In this paper, an automotive bushing is regarded as nonlinear viscoelastic incompressible material. Instron 8801 equipment was used for experimental res earch and ramp-to-constant displacement control test was used for data acquisition. Displacement dependent force relaxation function was obtained from the force extrapolation method and expressed as the explicit combination of time and displacement. Pipkin-Rogers model, which is the direct relation of force and displacement, was obtained and comparison studies between the experimental results and the Pipkin-Rogers results were carried out.

Effect of chiral structure for free vibration of DWCNTs: Modal analysis

  • Asghar, Sehar;Naeem, Muhammad N.;Khadimallah, Mohamed Amine;Hussain, Muzamal;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.577-588
    • /
    • 2020
  • In this paper, vibration attributes of chiral double-walled carbon nanotubes (CNTs) based on nonlocal elastic shell model have been investigated. The impact of small scale is being perceived by establishing Flügge shell model. The wave propagation is engaged to frame the ruling equations as eigen value system. The influence of nonlocal parameter subjected to different end supports has been overtly examined. A suitable choice of material properties and nonlocal parameter been focused to analyze the vibration characteristics. The new set of inner and outer tubes radii investigated in detail against aspect ratio and length. The dominance of boundary conditions via nonlocal parameter is shown graphically. Whereas for lower aspect ratio the frequencies coincide but as it continues to expand the difference between all respective boundary conditions slightly tend to increase. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode (일래스토메릭 부싱의 반경방향모드 비선형 점탄성 모델연구)

  • 이성범;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.703-708
    • /
    • 2002
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the load applied to the shaft or sleeve and the relative deformation of Elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation fur elastomeric bushing is important fur dynamic numerical simulations. A boundary value problem for the bushing response leads to the load-displacement relation which requires complex calculations and is hence unsuitable. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data fur the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation fur radial response of the bushing. After the load relaxation function for the bushing is obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of Modified Lianis model and those of the proposed model. It is shown that the proposed Pipkin-Rogers model is in very good agreement with Modified Lianis model.

  • PDF

Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes

  • Hussain, Muzamal;Naeem, Muhammad N.;Asghar, Sehar;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.307-322
    • /
    • 2020
  • In this article, free vibration of double-walled carbon nanotubes (DWNT) based on nonlocal Kelvin's model have been investigated. For this purpose, a nonlocal Kelvin's model is established to observe the small scale effect. The wave propagation is employed to frame the governing equations as eigenvalue system. The influence of nonlocal parameter subjected to different end supports has been overtly examined. The new set of inner and outer tubes radii investigated in detail against aspect ratio. The influence of boundary conditions via nonlocal parameter is shown graphically. Due to small scale effect fundamental frequency ratio decreases as length to diameter ratio increases. Small scale effect becomes negligible on all end supports for the higher values of aspect ratio. With the smaller inner tube radius double-walled CNT behaves more sensitive towards nonlocal parameter. The results generated furnish the evidence regarding applicability of nonlocal model and also verified by earlier published literature.

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Automotive Suspension System (I) -Axial Mode- (차량현가장치용 일래스토메릭 부시으이 비선형점탄성 모델연구 (I) -축 방향 모드-)

  • 이성범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.154-161
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer suface. The relation between the force applied to the shaft or sleeve and their relative deformation is nolinear and exhibits features of viscoelasticity. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the force relaxation function of the bushing. The new nonlinear viscoelastic bushing model, which is called Pipkin-Rogers model, is proposed and it is shown that the predictions of the proposed force-displacement relation are in very good agreement with the exact results. This new bushing model is thus very suitable for use in multi-body dynamics codes. The success of the present study for axial mode response suggests that the same approach be applied to other modes, such as torsional or radial modes.

  • PDF