Browse > Article
http://dx.doi.org/10.12989/acc.2020.9.6.577

Effect of chiral structure for free vibration of DWCNTs: Modal analysis  

Asghar, Sehar (Department of Mathematics, Govt. College University Faisalabad)
Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad)
Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Iqbal, Zafar (Department of Mathematics, University of Sargodha)
Tounsi, Abdelouahed (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Publication Information
Advances in concrete construction / v.9, no.6, 2020 , pp. 577-588 More about this Journal
Abstract
In this paper, vibration attributes of chiral double-walled carbon nanotubes (CNTs) based on nonlocal elastic shell model have been investigated. The impact of small scale is being perceived by establishing Flügge shell model. The wave propagation is engaged to frame the ruling equations as eigen value system. The influence of nonlocal parameter subjected to different end supports has been overtly examined. A suitable choice of material properties and nonlocal parameter been focused to analyze the vibration characteristics. The new set of inner and outer tubes radii investigated in detail against aspect ratio and length. The dominance of boundary conditions via nonlocal parameter is shown graphically. Whereas for lower aspect ratio the frequencies coincide but as it continues to expand the difference between all respective boundary conditions slightly tend to increase. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.
Keywords
vibration; nonlocal parameter; double-walled CNTs; $Fl{\ddot{u}}gge$ shell model;
Citations & Related Records
Times Cited By KSCI : 35  (Citation Analysis)
연도 인용수 순위
1 Arefi, M., Bidgoli, E.M.R., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aerosp. Sci. Technol., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036.   DOI
2 Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B: Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092.   DOI
3 Sedighi, H.M., Reza, A. and Zare, J. (2011)", Study on the frequency-amplitude relation of beam vibration", Int. J. Phys. Sci., 6(36), 8051-8056. https://doi.org/10.5897/IJPS11.1556.
4 Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
5 Arefi, M., Karroubi, R. and Irani-Rahaghi, M. (2016), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer", Appl. Math. Mech., 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9.   DOI
6 Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.   DOI
7 Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.   DOI
8 Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.   DOI
9 Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical and buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020.   DOI
10 Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065.   DOI
11 She, G.L., Ren, Y.R. and Yuan, F.G. (2019), "Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems", Steel Compos. Struct., 31(6), 641-653. https://doi.org/10.12989/scs.2019.31.6.641.   DOI
12 Shen, H.S. and Zhang, C.L. (2010), "Torsional buckling and post buckling of double-walled carbon nanotubes by nonlocal shear deformable shell model", Compos. Struct., 92(5), 1073-1084. https://doi.org/10.1016/j.compstruct.2009.10.002.   DOI
13 Soldano, C. (2015), "Hybrid metal-based carbon nanotubes", "Novel platform for multifunctional applications", Prog. Mater. Sci., 69, 183-212. https://doi.org/10.1016/j.pmatsci.2014.11.001.   DOI
14 Sosa, E.D., Darlington, TK., Hanos, B.A. and O'Rourke, M.J.E. (2014), "Multifunctional thermally remendable nanocomposites", J. Compos., Article ID 705687, 12. http://dx.doi.org/10.1155/2014/705687.
15 Sudak, L.J. (2003), "Column buckling of multi-walled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281-7287. https://doi.org/10.1063/1.1625437.   DOI
16 Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of single walled carbon nanotubes", Phys. Rev. B, 68, 165401. https://doi.org/10.1103/PhysRevB.68.165401.   DOI
17 Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.   DOI
18 Brischotto, S. (2015), "A continuum shell model including van der Waals interaction for free vibrations of double-walled carbon nanotubes", CMES, 104, 305-327.
19 Tahouneh, V. (2017), "Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate", Steel Compos. Struct., 25(6), 649-661. https://doi.org/10.12989/scs.2017.25.6.649.   DOI
20 Usuki, T. and Yogo, K. (2009), "Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory", Proc. Royal Soc. A., 465(2104), 1199-1226. https://doi.org/10.1098/rspa.2008.0394.   DOI
21 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.   DOI
22 Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect", Defence Technology. https://doi.org/10.1016/j.dt.2020.01.001.
23 Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., 34(5), 657-670. https://doi.org/10.12989/scs.2020.34.5.657.   DOI
24 Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243.   DOI
25 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Science and Business Media, New York.
26 Xiaobin, L., Shuangxi, X., Weiguo, W. and Jun, L. (2014), "An exact dynamic stiffness matrix for axially loaded double-beam systems", Sadhana, 39(3), 607-623. https://doi.org/10.1007/s12046-013-0214-5.   DOI
27 Wang, C.Y. and Zhang, L.C. (2007), "Modelling the free vibration of single-walled carbon nanotubes", Proceedings of the 5th Australasian Congress on Applied Mechanics, Engineers Australia.
28 Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A., 357(2), 130-135. https://doi.org/10.1016/j.physleta.2006.04.026.   DOI
29 Wang, Q., Zhou, G.Y. and Lin, K.C. (2006), "Scale effect on wave propagation of double-walled carbon nanotubes", Int. J. Solid. Struct., 43, 6071-6084. https://doi.org/10.1016/j.ijsolstr.2005.11.005.   DOI
30 Xu, K.U., Aifantis, E.C. and Yan, Y.H. (2008), "Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Mech., 75(2), 021013-1. https://doi.org/10.1115/1.2793133.   DOI
31 Hao, M.J., Guo, X.M. and Wang, Q. (2010), "Small-scale effect on torsional buckling of multi-walled carbon nanotubes", Eur. J. Mech. A/Solid., 29(1), 49-55. https://doi.org/10.1016/j.euromechsol.2009.05.008.   DOI
32 Fakhrabadi, M.M.S., Rastgoo, A. and Ahmadian, M.T. (2015), "Application of electrostatically actuated carbon nanotubes in nanofluidic and bio-nanofluidic sensors and actuators", Measure., 73, 127-136. https://doi.org/10.1016/j.measurement.2015.05.009.
33 Flugge, W. (1962), Statik und Dynamik der Scahlen, Springer, Berlin, Germany.
34 Fu, Y.M., Hong, J.W. and Wang, X.Q. (2006), "Analysis of nonlinear vibration for embedded carbon nanotubes", J. Sound Vib., 296(4-5), 746-756. https://doi.org/10.1016/j.jsv.2006.02.024.   DOI
35 Yoon, J., Ru, C.Q. and Mioduchowski, A. (2003), "Vibration of an embedded multiwall carbon nanotube", Compos. Sei. Tech., 63(11), 1533-1542. https://doi.org/10.1016/S0266-3538(03)00058-7.   DOI
36 Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: instabilities beyond linear response", Phys. Rev. Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511.   DOI
37 Yakobson, B.I., Campbell, M.P., Brabec, C.J. and Bemholc J. (1997), "High strain rate fracture and C-chain unravelling in carbon nanotubes", Comput. Mater. Sei., 8(4), 341-348. https://doi.org/10.1016/S0927-0256(97)00047-5.   DOI
38 Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499.   DOI
39 Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023.   DOI
40 Hernandez, E., Goze, C., Bemier, P. and Rubio, A. (1998), "Elastic properties of C and BxCyNz composite nanotubes", Phys. Rev. Lett., 80, 4502-505. https://doi.org/10.1103/PhysRevLett.80.4502.   DOI
41 Hsu, J.C., Chang, R.P. and Chang, W.J. (2008), "Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory", Phys. Lett. A, 372(16), 2757-2759. https://doi.org/10.1016/j.physleta.2008.01.007.   DOI
42 Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech Phys. Solid., 56, 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.   DOI
43 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(1), 56-58. https://doi.org/10.1038/354056a0.   DOI
44 Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.   DOI
45 Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. http://dx.doi.org/10.12989/sem.2015.54.4.693.   DOI
46 Zhang, Y., Li, G. and Liew, K.M. (2018), "Thermomechanical buckling characteristic of ultrathin films based on nonlocal elasticity theory", Compos. Part B: Eng., 153, 184-193. https://doi.org/10.1016/j.compositesb.2018.07.046.   DOI
47 Hussain, M. and Naeem, M.N. (2019a), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes". Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.   DOI
48 Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B: Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.   DOI
49 Iijima, S., Brabec, C., Maiti, A. and Bemholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104(5), 2089-2092. https://doi.org/10.1063/1.470966.   DOI
50 Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.   DOI
51 Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., 24, 359-367. https://doi.org/10.12989/scs.2017.24.3.359.   DOI
52 Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002.   DOI
53 Khosrazadeh, A. and Hajabasi, M.A. (2012), "Free vibrations of embedded doube-walled carbon nanotubes considering nonlinear interlayer van der Waals forces", J. AMP, 36, 997-1007. https://doi.org/10.1016/j.apm.2011.07.063.
54 Lei, Z. and Zhang, Y. (2018), "Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers", Steel Compos. Struct., 28(4), 495-508. https://doi.org/10.12989/scs.2018.28.4.495.   DOI
55 Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solid. Struct., 40(10), 2487-2492. https://doi.org/10.1016/S0020-7683(03)00056-8.   DOI
56 Loy, C.T. Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.   DOI
57 Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.   DOI
58 Natsuki, T., Morinobu, E. andTsuda, H. (2006), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 99(3), 034311. https://doi.org/10.1063/1.2170418.   DOI
59 Natsuki, T., Qing, Q.N. and Morinobu, E. (2007), "Wave propagation in single-walled and double-walled carbon nanotubes filled with fluids", J. Appl. Phys., 101(3), 034319-034319-5. https://doi.org/10.1063/1.2432025.   DOI
60 Adela, I. (2018), Computational Fluid Dynamics, Romania.
61 Amara, K., Tounsi, A., Mechab, I. and Adda-Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34(12), 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029.   DOI
62 Arefi, M., Bidgoli, E.M.R. and Rabczuk, T. (2019), "Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST", Eur. J. Mech.-A/Solid., 77, 103802. https://doi.org/10.1016/j.euromechsol.2019.103802.   DOI
63 Ansari, R. and Rouhi, H. (2012), "Nonlocal analytical Flugge shell model for the axial buckling of double-walled carbon nanotubes with different end conditions", Int. J. Nano, 7, 1250081. https://doi.org/10.1142/S179329201250018X.
64 Ansari, R. and Rouhi, H. (2013), "Nonlocal analytical Flugge shell model for the vibrations of double-walled carbon nanotubes with different end conditions", Int. J. Appl. Mech., 80, 021006-1. https://doi.org/10.1142/S179329201250018X.   DOI
65 Ansari, R., Hemmatnezhad, M. and Rezapour, J. (2011), "The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions", Curr. Appl. Phys., 11(3), 692-697. https://doi.org/10.1016/j.cap.2010.11.034.   DOI
66 Ansari, R., Sahmani, S. and Arash, B. (2010), "Nonlocal plate model for free vibrations of single-layered graphene sheets", Phys. Lett. A., 375(1), 53-62. https://doi.org/10.1016/j.physleta.2010.10.028.   DOI
67 Arefi, M. and Zenkour, A.M. (2018), "Size-dependent thermoelastic analysis of a functionally graded nanoshell", Mod. Phys. Lett. B, 32(3), 1850033. https://doi.org/10.1142/S0217984918500331.   DOI
68 Arefi, M., Bidgoli, E.M.R. and Rabczuk, T. (2019), "Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT", Thin Wall. Struct., 142, 444-459. https://doi.org/10.1016/j.tws.2019.04.054.   DOI
69 Pradhan, S.C. and Phadikar, J.K. (2009), "Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models", Phys. Lett. A., 373(11), 1062-9. https://doi.org/10.1016/j.physleta.2009.01.030.   DOI
70 Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sei., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.   DOI
71 Qian, D., Wagner, G.J., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55(6), 495-533. https://doi.org/10.1115/1.1490129.   DOI
72 Rouhi, H., Ansari, R. and Arash, B. (2013), "Vibration analysis of double-walled carbon nanotubes based on the non-local donnell shell via a new numerical approach", Int J. Mech. Sei., 37, 91-105.
73 Rouhi, H., Bazdid Vahdati, M. and Ansari, R. (2015), "Rayleigh-Rits vibrational analysis of multi-walled carbon nanotubes based on the non-local Flugge shell theory", J. Compos., 750392. https://doi.org/10.1155/2015/750392.
74 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805. https://doi.org/10.12989/scs.2019.33.6.805.   DOI
75 Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejon, P. (1999), "Ab-initio structural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B, 59, 12678-2688. http://dx.doi.org/10.1103/PhysRevB.59.12678.   DOI
76 Sedighi, H.M. and Yaghootian, A. (2016), "Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity", J. Appl. Mech. Techn. Phys., 57(1), 90-100. https://doi.org/10.1134/S0021894416010107.   DOI