• Title/Summary/Keyword: outage capacity

Search Result 163, Processing Time 0.031 seconds

Outage Capacity Analysis for Cooperative DF and AF Relaying in Dissimilar Rayleigh Fading Channels

  • Shrestha, Suchitra;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.361-370
    • /
    • 2008
  • Cooperative relaying permits one or more relay to transmit a signal from the source to the destination, thereby increasing network coverage and spectral efficiency. The performance of cooperative relaying is often measured as outage probability. However, appropriate measure for the channel quality is outage capacity. Although the outage probability for cooperative relaying protocol has been analyzed before, very little research has been addressed for the outage capacity. This paper is the first of its kind to derive a closed-form analytical solution of outage capacity using fixed decode and forward relaying and amplify and forward relaying in dissimilar Rayleigh fading channels, considering channel coefficients known to the receiver side. The analytical results show a tradeoff between the SNR and the number of relays for specific outage capacity. A comparison between decode and forward relaying and amplify and forward relaying shows that decode and forward relaying outperforms amplify and forward relaying for a large number of relays.

Downlink Capacity Analysis of Distributed Antenna Systems with Imperfect Channel State Information

  • Xu, Weiye;Lin, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.253-271
    • /
    • 2017
  • In this paper, considering that perfect channel state information (CSI) is hard to achieve in practice, the downlink capacity of distributed antenna systems (DAS) with imperfect CSI and multiple receive antennas is investigated over composite Rayleigh fading channel. According to the performance analysis, using the numerical calculation, the probability density function (PDF) of the effective output SNR is derived. With this PDF, accurate closed-form expressions of ergodic capacity and outage probability of DAS with imperfect CSI are, respectively, obtained, and they include the ones under perfect CSI as special cases. Besides, the outage capacity of DAS in the presence of imperfect CSI is also derived, and a Newton's method based practical iterative algorithm is proposed to find the accurate outage capacity. By utilizing the Gaussian distribution approximation, another approximate closed-form expression of outage capacity is also derived, and it may simplify the calculation of accurate outage capacity. These theoretical expressions can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI. Simulation results verify the effectiveness of the theoretical analysis, and the system capacity can be improved by increasing the receive antennas, and decreasing the estimation error or path loss. Moreover, the system can tolerate the estimation error variance up to about 0.01 with a slight degradation in the capacity.

Downlink Performance of Distributed Antenna Systems in MIMO Composite Fading Channel

  • Xu, Weiye;Wang, Qingyun;Wang, Ying;Wu, Binbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3342-3360
    • /
    • 2014
  • In this paper, the capacity and BER performance of downlink distributed antenna systems (DAS) with transmit antenna selection and multiple receive antennas are investigated in MIMO composite channel, where path loss, Rayleigh fading and lognormal shadowing are all considered. Based on the performance analysis, using the probability density function (PDF) of the effective SNR and numerical integrations, tightly-approximate closed-form expressions of ergodic capacity and average BER of DAS are derived, respectively. These expressions have more accuracy than the existing expressions, and can match the simulation well. Besides, the outage capacity of DAS is also analyzed, and a tightly-approximate closed-form expression of outage capacity probability is derived. Moreover, a practical iterative algorithm based on Newton's method for finding the outage capacity is proposed. To avoid iterative calculation, another approximate closed-form outage capacity is also derived by utilizing the Gaussian distribution approximation. With these theoretical expressions, the downlink capacity and BER performance of DAS can be effectively evaluated. Simulation results show that the theoretical analysis is valid, and consistent with the corresponding simulation.

Outage Probability Analysis under Time-varying characteristic of Indoor Single User PLC Considering Channel Length and Transmit Power (채널 길이와 전송 전력을 고려한 시변 환경 옥내 단일 사용자 전력선 통신의 outage 확률 분석)

  • Shin, Jae-Young;Jeong, Ji-Chai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.285-290
    • /
    • 2010
  • We investigate the outage probability in terms of QoS (quality of service) in indoor PLC network. We consider various kinds of appliances for realistic indoor PLC network. For estimation of the outage probability, we calculate the time-varying channel responses considering the loading conditions based on regular human activities and include the additive noise. We calculate the outage probability for each terminal and investigate relationship between the outage probability and the channel length, and transmit powers. Our results suggest that the outage probability is increased when the channel length becomes longer because more appliances affect the amount of reduced channel capacity and is not improved distinctly for very high and low outage threshold by increasing the transmit power. However, we can see outage probability improvement for 30% outage threshold case by increasing the transmit power.

A Study on Impact of Generator Maintenance Outage Modeling on Long-term Capacity Expansion Planning (발전기 계획예방정비 모델링 방식이 전원계획 수립에 미치는 영향에 관한 연구)

  • Kim, Hyoungtae;Lee, Sungwoo;Kim, Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.505-511
    • /
    • 2018
  • Long term capacity expansion planning has to be carried out to satisfy pre-defined system reliability criterion. For purpose of assessing system reliability, probabilistic simulation technique has been widely adopted. However, the way how to approximate generator outage, especially maintenance outage, in probabilistic simulation scheme can significantly influence on reliability assessment. Therefore, in this paper, 3 different maintenance approximation methods are applied to investigate the quantitative impact of maintenance approximation method on long term capacity expansion planning.

A Restoration Algorithm using Moving the tie Switch in Distribution System in case of Fault Occur in Power system Substation MTR (변전소 내 주변압기 사고 발생 시 배전계통 연계점 이동을 통한 복구 알고리즘)

  • Hong, Jun-Ho;Lee, Seung-Jae;Choi, Myeon-Song;Lim, Il-Hyung;Kim, Tae-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.159_160
    • /
    • 2009
  • In this paper proposes a new algorithm of efficiency outage restoration using a outage load switching to a healthy MTR a fault occurrence at a MTR. In addtion, proposed algorithm includes a outage restoration method which keeps MTR optimal capacity with reorganization of distribution network in case it can not restore outage state loads caused by shortage of healthy MTR remain capacity. In case that proposed sequence still can not complete restoration, this paper suggests a efficiency outage restoration with objective function included priority in outage loads.

  • PDF

Asymptotic Gain of Network-Coded Retransmission in Wireless Networks (무선 네트워크에서 네트워크 코딩 재전송 기법의 점근적 이득)

  • Ko, Seung-Woo;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.464-473
    • /
    • 2012
  • In this paper, we derive the gain of network coding when it is utilized for retransmission in wireless networks. To the end, we derive the outage probability of the network-coded transmission and express the diversity order as a function of the number of nodes and the node's listening probability. From the outage probability, we formulate the ${\epsilon}$-outage capacity. The network-coding gain is the ratio of the ${\epsilon}$-outage capacities between network-coded and non-coded transmissions. Under our system model, we find that the network-coding gain is a function of the diversity order. Moreover, when there are infinitely many nodes, we show that the network coding gain approaches $0.25{\epsilon}^{-1}$.

Hybrid Spectrum Sharing with Cooperative Secondary User Selection in Cognitive Radio Networks

  • Kader, Md. Fazlul;Asaduzzaman, Asaduzzaman;Hoque, Md. Moshiul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2081-2100
    • /
    • 2013
  • In this paper, we propose a cooperative hybrid spectrum sharing protocol by jointly considering interweave (opportunistic) and underlay schemes. In the proposed protocol, secondary users can access the licensed spectrum along with the primary system. Our network scenario comprises a single primary transmitter-receiver (PTx-PRx) pair and a group of M secondary transmitter-receiver (STx-SRx) pairs within the transmission range of the primary system. Secondary transmitters are divided into two groups: active and inactive. A secondary transmitter that gets an opportunity to access the secondary spectrum is called "active". One of the idle or inactive secondary transmitters that achieves the primary request target rate $R_{PT}$ will be selected as a best decode-and-forward (DF) relay (Re) to forward the primary information when the data rate of the direct link between PTx and PRx falls below $R_{PT}$. We investigate the ergodic capacity and outage probability of the primary system with cooperative relaying and outage probability of the secondary system. Our theoretical and simulation results show that both the primary and secondary systems are able to achieve performance improvement in terms of outage probability. It is also shown that ergodic capacity and outage probability improve when the active secondary transmitter is located farther away from the PRx.

On the Capacities of Spectrum-Sharing Systems with Transmit Diversity

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Motivated by recent works on spectrum-sharing systems, this paper investigates the effects of transmit diversity on the peak interference power limited cognitive radio(CR) networks. In particular, we derive the ergodic and outage capacities of a spectrum-sharing system with multiple transmit-antennas. To derive the capacities, peak interference power constraint is imposed to protect the primary receiver. In a CR transmitter and receiver pair with multiple antennas at the transmitter side, the allowable transmit power is distributed over the transmit-antennas to achieve transmit diversity at the receiver. We investigate the effect of this power distribution when a peak interference power constraint is imposed to protect the primary receiver. We show that the transmit diversity does not improve the ergodic capacity compared to the single-antenna system. On the other hand, the transmit diversity significantly improves the outage capacity. For example, two transmit-antennas improve the outage capacity 10 times compared to the single-antenna with a 0 dB interference constraint.

Outage Analysis of OFDM-Based Dual-hop Multi-Relay Systems with Best Relay Selection (최선 릴레이 선택을 적용한 OFDM 기반 이중-홉 다중 릴레이 시스템의 아웃티지 성능 분석)

  • Park, Jae-Cheol;Wang, Jin-Soo;Lee, Ji-Hye;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.487-494
    • /
    • 2010
  • This paper presents an OFDM-based dual-hop multi-relay system with best relay selection maximizing the mutual information. For the system either with decode-and-forward (DF) relays or with amplify-and-forward (AF) relays, we derive a lower-bound on the outage probability and the diversity order achievable in frequency selective fading channels and provide the outage capacity from simulation. Performance evaluation shows that both DF and AF provide the same diversity order as in the lower-bound but DF of which the outage probability is much closer to the lower-bound provides a better outage capacity than AF. It is also observed that the SNR gain of DF over AF gets larger as either the number of resolvable multipaths or the number of relay candidates increases, which makes DF relaying more favorable to the OFDM-based multi-relay system.