• Title/Summary/Keyword: osteoclastogenesis

Search Result 175, Processing Time 0.031 seconds

Accelerating Effects of Quercetin on the $TNF-{\alpha}-Induced$ Apoptosis in MC3T3-E1 Osteoblastic Cells

  • Choi, Yong-Sung;Chung, Song-Woo;Jeon, Young-Mi;Kim, Jong-Ghee;Lee, Jeong-Chae
    • Natural Product Sciences
    • /
    • v.11 no.3
    • /
    • pp.139-144
    • /
    • 2005
  • Bioflavone quercetin is believed to play an important role preventing bone loss by affecting osteoclastogenesis and regulating many systemic and local factors including hormones and cytokines. This study examined how quercetin acts on tumor necrosis factor-alpha ($TNF-{\alpha}$)-mediated apoptosis in MC3T3-E1 osteoblastic cells. Apoptosis assays revealed the dose-dependent acceleration of quercetin on $TNF-{\alpha}-induced$ apoptosis in MC3T3-E1 cells, which was demonstrated by the increased number of positively stained cells in the trypan blue staining and TUNEL assay, and the migration of many cells to the $sub-G_0/G_1$ phase in flow cytometric analysis. In particular, quercetin treatment alone increased the expression of p53 and p21 proteins in the cells. Consequently, this study showed that quercetin accelerates the $TNF-{\alpha}-induced$ apoptosis in MC3T3-E1 osteoblastic cells.

Salivary soluble receptor activator of nuclear factor kappa B ligand/osteoprotegerin ratio in periodontal disease and health

  • Tabari, Zahra Alizadeh;Azadmehr, Abbas;Tabrizi, Mohammad Amir Alizadeh;Hamissi, Jalaloddin;Ghaedi, Fatemeh Baharak
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.5
    • /
    • pp.227-232
    • /
    • 2013
  • Purpose: The receptor activator of nuclear factor kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system plays a significant role in osteoclastogenesis, activation of osteoclasts, and regulation of bone resorption. This study aimed to evaluate the use of the salivary soluble RANKL (sRANKL)/OPG ratio as a diagnostic marker for periodontitis in nonsmokers. Methods: Twenty-five patients with chronic periodontitis and 25 individuals with a healthy periodontium were enrolled in this study. Samples containing 5 mL of unstimulated saliva were obtained from each subject. Salivary sRANKL and OPG concentrations were determined using a standard enzyme-linked immunosorbent assay. Statistical analysis was performed using SPSS ver. 18.0. Results: The levels of sRANKL and OPG were detectable in all of the samples. Positive relationships were found between the plaque index and clinical attachment level and both the salivary concentration of sRANKL and the salivary sRANKL/OPG ratio (P<0.05). The salivary concentration of sRANKL and the sRANKL/OPG ratio were significantly higher in the periodontitis group than in the healthy group (P=0.004 and P=0.001, respectively). In contrast, the OPG concentration showed no significant differences between the groups (P=0.455). Conclusions: These findings suggest that the salivary sRANKL/OPG ratio may be helpful in the screening and diagnosis of periodontitis. However, longitudinal studies with larger populations are needed to confirm these results.

The Th17 and Autoimmune Arthritis (Th17과 자가면역 관절염)

  • Cho, Mi-La;Heo, Yu-Jung;Park, Jin-Sil;Lee, Seon-Yeong;Sung, Young-Chul;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.7 no.1
    • /
    • pp.10-17
    • /
    • 2007
  • Autoimmune arthritis, such as rheumatoid arthritis (RA), is a chronic inflammatory disorder that primarily affects the joints and then results in their progressive destruction. Effector Th cells have been classified as Th1 and Th2 subsets based on their cytokine expression profiles and immune regulatory function. Another subset of T cells termed Th17 was recendy discovered and known to selectively produce IL-17. Also, Th17 was shown to be generated by TGF${\beta}$ and IL-6 and maintained by IL-23. IL-17 is a proinflammatory cytokine that is considered to involve the development of various inflammatory autoimmune diseases such as RA, asthma, lupus, and allograft rejection. IL-17 is present in the sera, synovial fluids and synovial biopsies of most RA patient. IL-17 activates RA synovial fibroblasts to synthesize IL-6, IL-8 and VEGF via PI3K/Akt and NF-${\kappa}B$ dependent pathway. IL-17 increases IL-6 production, collagen destruction and collagen synthesis. In addition, it not only causes bone resorption but also increases osteoclastogenesis and fetal cartilage destruction. Inhibition of the IL-17 production may contribute a novel therapeutic approach along with potent anti-inflammatory effect and with less immunosuppressive effect on host defenses.

Antifibrotic effects of sulforaphane treatment on gingival elasticity reduces orthodontic relapse after rotational tooth movement in beagle dogs

  • Kim, Kyong-Nim;Kim, Jue-Young;Cha, Jung-Yul;Choi, Sung-Hwan;Kim, Jin;Cho, Sung-Won;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.50 no.6
    • /
    • pp.391-400
    • /
    • 2020
  • Objective: Increased gingival elasticity has been implicated as the cause of relapse following orthodontic rotational tooth movement and approaches to reduce relapse are limited. This study aimed to investigate the effects of sulforaphane (SFN), an inhibitor of osteoclastogenesis, on gene expression in gingival fibroblasts and relapse after rotational tooth movement in beagle dogs. Methods: The lower lateral incisors of five beagle dogs were rotated. SFN or dimethylsulfoxide (DMSO) were injected into the supra-alveolar gingiva of the experimental and control group, respectively, and the effect of SFN on relapse tendency was evaluated. Changes in mRNA expression of extracellular matrix components associated with gingival elasticity in beagles were investigated by real-time polymerase chain reaction. Morphology and arrangement of collagen fibers were observed on Masson's trichrome staining of buccal gingival tissues of experimental and control teeth. Results: SFN reduced the amount and percentage of relapse of orthodontic rotation. It also decreased the gene expression of lysyl oxidase and increased the gene expression of matrix metalloproteinase (MMP) 1 and MMP 12, compared with DMSO control subjects. Histologically, collagen fiber bundles were arranged irregularly and were not well connected in the SFN-treated group, whereas the fibers extended in parallel and perpendicular directions toward the gingiva and alveolar bone in a more regular and well-ordered arrangement in the DMSO-treated group. Conclusions: Our findings demonstrated that SFN treatment may be a promising pharmacologic approach to prevent orthodontic rotational relapse caused by increased gingival elasticity of rotated teeth in beagle dogs.

Effects of Gastrodia elata Blune Water Extract on RANKL-induced Osteoclast Differentiation (천마가 RANKL에 의해 유도된 파골세포의 분화에 미치는 효과)

  • Choi, Yun-Hong;Song, Jeong-Hoon;Jang, Sung-Jo;Kim, Jin-Kook;Choi, Min-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.5
    • /
    • pp.807-813
    • /
    • 2010
  • Impairment of balance between bone-resorbing osteoclasts and bone-forming osteoblasts result in bone disease. Especially, increased osteoclast formation and activity are responsible for bone diseases such as osteoporosis, rheumatoid arthritis, periodontal disease. Natural metabolites of plants have recently received much attention as an alternative tools for the development of novel therapeutic strategy. The aim of this study was to search the natural products to inhibit osteoclast differentiation and was to evaluate of its mechanism. Water extract of Gastrodia elata Blune significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophages (BMMs) in a dose dependent manner. However, water extract of Gastrodia elata Blune did not affect cytotoxicity when compared with control. The mRNA expression of c-Fos, NFATc1, and TRAP induced by RANKL was inhibited by water extract of Gastrodia elata Blune treatment. Also, water extract of Gastrodia elata Blune inhibited the protein expression of c-Fos and NFATc1 expression in BMMs treated with RANKL. Water extract of Gastrodia elata Blune suppressed the phosphorylation of p38 induced by RANKL. In general, RANKL considerably inhibited the expression level of Id2 and MafB known as negative regulators of osteoclastogenesis, but RANKL did not inhibit Id2 and MafB expression in BMMs when it was co-treated with Gastrodia elata Blune. Taken together, these results suggest that Gastrodia elata Blune may be a useful drug in the treatment of bone-related disease.

PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis

  • Kim, Juyoung;Jung, Kyung Hee;Yoo, Jaeho;Park, Jung Hee;Yan, Hong Hua;Fang, Zhenghuan;Lim, Joo Han;Kwon, Seong-Ryul;Kim, Myung Ku;Park, Hyun-Ju;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.172-183
    • /
    • 2020
  • Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.

Effect of Exopolymers of Aureobasidium pullulans on Improving Osteoporosis Induced in Ovariectomized Mice

  • SONG HEBOK;PARK DONG CHAN;DO GYUNG MIN;HWANG SEUNG-LARK;LEE WON KYU;KANG HEUN-SOO;PARK BOK-RYUN;JANG HEE-JEONG;SONG CHANG-WOO;PARK EUI KYUN;KIM SHIN-YOON;HUH TAE-LIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • Treatment with exopolymers of Aureobasidium pullulans SM-2001 containing $\beta-1,3/1,6-glucan$ inhibited osteoclastogenesis of bone marrow stem cells in a co-culture system with calvariae osteoblastic cells. In addition, the treatment increased mineral deposition in osteoblastic cells. These two observations prompted us to evaluate whether the exopolymers could be used as an anti-osteoporotic agent, and efficacy of the exopolymers to prevent bone loss was compared with alendronate, a bisphosphonate, in ovariectomized mice prone to osteoporosis. Administration of the exopolymers to the ovariectomized mice resulted in improved effects on femur weight and histomorphometric changes of femur such as trabecular bone volume (TBV), trabecular bone thickness (TBT), and cortical bone thickness (CBT). In conclusion, the exopolymers treatment inhibited bone loss from osteoporosis induced by ovariectomy, and the effect was comparable to alendronate administration.

Soluble Expression and Purification of Receptor Activator of Nuclear Factor-Kappa B Ligand Using Escherichia coli

  • Park, Sol-Ji;Lee, Se-Hoon;Kim, Kwang-Jin;Kim, Sung-Gun;Kim, Hangun;Choe, Han;Lee, Sang Yeol;Yun, Jung-Mi;Cho, Jae Youl;Chun, Jiyeon;Choi, Kap Seong;Son, Young-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.274-279
    • /
    • 2015
  • Receptor activator of nuclear factor-kappa B ligand (RANKL) is a critical factor in osteoclastogenesis. It makes osteoclasts differentiate and multinucleate in bone remodeling. In the present study, RANKL was expressed as a soluble maltose binding protein (MBP)-fusion protein using the Escherichia coli maltose binding domain tag system (pMAL) expression vector system. The host cell E. coli DH5α was cultured and induced by isopropyl β-D-1-thiogalactopyranoside for rRANKL expression. Cells were disrupted by sonication to collect soluble MBP-fused rRANKL. The MBP-fusion rRANKL was purified with MBP Trap affinity chromatography and treated with Tobacco Etch Virus nuclear inclusion endopeptidase (TEV protease) to remove the MBP fusion protein. Dialysis was then carried out to remove binding maltose from the cleaved rRANKL solution. The cleaved rRANKL was purified with a second MBP Trap affinity chromatography to separate unsevered MBP-fusion rRANKL and cleaved MBP fusion protein. The purified rRANKL was shown to have biological activity by performing in vitro cell tests. In conclusion, biologically active rRANKL was successfully purified by a simple two-step chromatography purification process with one column.

Expression of mRANKL in rat PDL cell (Rat periodontal ligament cell에서의 RANKL mRNA의 발현)

  • Kim, Hyun-Soo;Chung, Hyun-Ju;Kim, Young-Joon;Kim, Ok-Su
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.367-375
    • /
    • 2004
  • As the periodontal ligament cells show similar phenotype with osteoblasts, periodontal ligament cells are thought to play an important role in alveolar bone remodeling. According to recent studies, receptor activation of nuclear factor $^{\kappa}B$ ligand (RANKL) and osteoprotegerin (OPG) are expressed in periodontal ligament cells during tooth movement. Also periodontal ligament cells is known to play an important role in the progression of periodontal disease. This study was designed how the expression of RANKL and OPG in periodontal ligament cells was regulated by IL-1 ${\beta}in$ the concentration of $0.01{\sim}10$ ng/ml. The results are as follows; 1. Periodontal ligament cells which stimulated by 1L-1 ${\beta}$ increased soluble RANKL synthesis by dose-dependent pattern in the concentration of $0.01{\sim}10$ ng/ml. 2. 1L-1 ${\beta}$ induced mRANKL expression in dose-dependent manner in the concentration of $0.01{\sim}5$ ng/ml. 3. mOPG expression was not to be influenced by 1L-1 ${\beta}$. These results suggested that rat periodontal ligament cells could regulate osteoclastogenesis by stimulation of production of RANKL.