• Title/Summary/Keyword: osmotic regulation

Search Result 48, Processing Time 0.031 seconds

Desensitization of $A_1$ Adenosine Receptors in Rat Cerebral Cortex (흰쥐 대뇌피질에서 $A_1$ 아데노신 수용체의 탈감작)

  • Park, Kyung-Sun;Yang, Wan-Suk;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.151-158
    • /
    • 1996
  • Following the subcutaneous administration of $R(-)N^6-(2-phenylisopropyl)adenosine(600\;nmol/kg/hr)$ to rats for 1 week using t$Alzet^{\circledR}$ mini-osmotic pumps, $A_1$ adenosine receptor functions were determined using $[^3H]DPCPX$ binding, $[^{35}S]GTP_{\gamma}S$ binding, and adenylyl cyclase assays. $A_1$ adenosine receptor binding and the inhibition of adenylyl cyclase activity by PIA was not altered in cerebrocortical membranes prepared from PIA-treated rats. However, there was a significant decrease in the $A_1$ adenosine receptor-mediated stimulation of $[^{35}S]GTP_{\gamma}S$ binding to cerebrocortical membranes prepared from PIA-treated rats(22.0% decrease in basal activity; 19.7% decrease in maximal activity). These results suggest that the desensitization of $A_1$ adenosine receptors following chronic administration involves agonist-induced uncoupling of the receptors from G proteins rather than alteration of $A_1$ adenosine receptor molecules. It is also suggested that the determination of stimulation of $[^{35}S]GTP_{\gamma}S$ binding to G proteins is a suitable tool in studying the receptor regulation including desensitization

  • PDF

Study on Toxicity and Extermination of Monogenea, Benedenia sp. Parasited to Culturing Rock Bream, Oplegnathus fasciatus in Southern Korea (남해 양식산 돌돔, Oplegnathus fasciatus에 기생한 단생흡충류, Benedenia sp.의 구제 및 독성에 관하여)

  • 최상덕;공용근;백재민;방인철
    • Journal of Aquaculture
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • In the southern sea of Korea, the culturing Rock bream, Oplegnathus fasciatus, ranging from 16.3 to 20.1cm in body length were sampled to examine how serious parasitic infection is. As a result, they were infected with 10 to 31 individuals of Monogenea, Benedenia sp. The parasitic sites of fish body was trunk (81.8%), caudal peduncle (16.5%) and the other portion (1.6%), and where ulceration and bleeding were observed with a large amount of muscus. When the treatment with formalin and freshwater were performed to get rid of the parasite, they were exterminated after 8 and 20 minutes in 100% and 70% freshwater, respectively and were killed after 10, 15 and 20 mimutes in the seawater added with formalin to be 250 ppm, 200 ppm and 150 ppm, 200 ppm and 150 ppm, respectively. During the treatment for parasite extermination, the fish showing a serious illness were dead in the 100% freshwater, whereas toxicity caused by formalin treatment was not detected in this study. The former is probably due to failure in the osmotic regulation of Rock bream.

  • PDF

Effect of Diet and Water Intake on Aquaporin 2 Function

  • Kim, Jun-Mo;Kim, Tae-Hee;Wang, Tong
    • Childhood Kidney Diseases
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • Appropriate control of diet and water intake is important for maintaining normal blood pressure, fluid and electrolyte homeostasis in the body. It is relatively understood that the amount of sodium and potassium intake directly affects blood pressure and regulates ion transporters; Na and K channel functions in the kidney. However, little is known about whether diet and water intake regulates Aquaporin (AQP) function. AQPs, a family of aquaporin proteins with different types being expressed in different tissues, are important for water absorption by the cell. Water reabsorption is a passive process driven by osmotic gradient and water permeability is critical for this process. In most of the nephron, however, water reabsorption is unregulated and coupled to solute reabsorption, such as AQP1 mediated water absorption in the proximal tubule. AQP2 is the only water channel founded so far that can be regulated by hormones in the kidney. AQP2 expressed in the apical membrane of the principal cells in the collecting tubule can be regulated by vasopressin (antidiuretic hormone) controlling the final volume of urine excretion. When vasopressin binds to its receptor on the collecting duct cells, it stimulates the translocation of AQP2 to the membrane, leading to increased water absorption via this AQP2 water channel. However, some studies also indicated that the AQP2 is also been regulated by vasopressin independent mechanism. This review is focused on the regulation of AQP2 by diet and the amount of water intake on salt and water homeostasis.

Sec-O-glucosylhamaudol mitigates inflammatory processes and autophagy via p38/JNK MAPK signaling in a rat neuropathic pain model

  • Oh, Seon Hee;Kim, Suk Whee;Kim, Dong Joon;Kim, Sang Hun;Lim, Kyung Joon;Lee, Kichang;Jung, Ki Tae
    • The Korean Journal of Pain
    • /
    • v.34 no.4
    • /
    • pp.405-416
    • /
    • 2021
  • Background: This study investigated the effect of intrathecal Sec-O-glucosylhamaudol (SOG) on the p38/c-Jun N-terminal kinase (JNK) signaling pathways, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related inflammatory responses, and autophagy in a spinal nerve ligation (SNL)-induced neuropathic pain model. Methods: The continuous administration of intrathecal SOG via an osmotic pump was performed on male Sprague-Dawley rats (n = 50) with SNL-induced neuropathic pain. Rats were randomized into four groups after the 7th day following SNL and treated for 2 weeks as follows (each n = 10): Group S, sham-operated; Group D, 70% dimethylsulfoxide; Group SOG96, SOG at 96 ㎍/day; and Group SOG192, SOG at 192 ㎍/day. The paw withdrawal threshold (PWT) test was performed to assess neuropathic pain. Western blotting of the spinal cord (L5) was performed to measure changes in the expression of signaling pathway components, cytokines, and autophagy. Additional studies with naloxone challenge (n = 10) and cells were carried out to evaluate the potential mechanisms underlying the effects of SOG. Results: Continuous intrathecal SOG administration increased the PWT with p38/JNK mitogen-activated protein kinase (MAPK) pathway and NF-κB signaling pathway inhibition, which induced a reduction in proinflammatory cytokines with the concomitant downregulation of autophagy. Conclusions: SOG alleviates mechanical allodynia, and its mechanism is thought to be related to the regulation of p38/JNK MAPK and NF-κB signaling pathways, associated with autophagy during neuroinflammatory processes after SNL.

Ecophysiological characteristics of Rosa rugosa under different environmental factors

  • Young-Been Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.85-102
    • /
    • 2023
  • Background: Ecophysiological characteristics of Rosa rugosa were analyzed under different environmental factors from May to October 2022. Photosynthesis, chlorophyll fluorescence, chlorophyll content, leaf water content (LWC), osmolality, carbohydrate content, and total ion content were measured to compare the physiological characteristics of R. rugosa at two study sites (i.e., in large pots and in the Goraebul coastal sand dune area). Results: When R. rugosa was exposed to high temperatures, photosynthetic parameters including net photosynthetic rate (PN) and stomatal conductance (gs) in both experiment areas declined. In addition, severe photoinhibition occurs when R. rugosa is continuously exposed to high photosynthetically active radiation (PAR), and because of this, relatively low Y(II) (i.e., the quantum yield of photochemical energy conversion in photosystem II [PSII]) and high Y(NO) (i.e., the quantum yield of non-regulated, non-photochemical energy loss in PSII) in the R. rugosa of the pot were observed. As the high Y(NPQ) (i.e., the quantum yield of regulated non-photochemical energy loss in PSII) of R. rugosa in the coastal sand dune, they dissipated the excessed photon energy through the non-photochemical quenching (NPQ) mechanism when they were exposed to relatively low PAR and low temperature. Rosa rugosa in the coastal sand dune has higher chlorophyll a and carotenoid content. The high chlorophyll a + b and low chlorophyll a/b ratios seemed to optimize light absorption in response to low PAR. High carotenoid content played an important role in NPQ. As a part of the osmotic regulation in response to low LWCs, R. rugosa exposed to high temperatures and continuously high PAR used soluble carbohydrates and ions to maintain high osmolality. Conclusions: We found that Fv/Fm was lower in the potted plants than in the coastal sand dune plants, indicating the vulnerability of R. rugosa to high temperatures and PAR levels. We expect that the suitable habitat range for R. rugosa will shrink and move to north under climate change conditions.

Effects of Supplemental Recombinant Bovine Somatotropin (rbST) and Cooling with Misters and Fans on Renal Function in Relation to Regulation of Body Fluids in Different Stages of Lactation in Crossbred Holstein Cattle

  • Boonsanit, D.;Chanpongsang, S.;Chaiyabutr, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.355-365
    • /
    • 2010
  • The aim of this study was to investigate the effect of supplemental recombinant bovine somatotropin (rbST) and cooling with misters and fans on renal function in relation to regulation of body fluids in different stages of lactation in crossbred Holstein cattle. Ten, 87.5% crossbred Holstein cattle were divided into two groups of 5 animals each, housing in a normal shaded barn (NS) and in a shaded barn with a mister-fans cooling system (MF). The experiment in each group was divided into 3 phases, early- (Day 75 postpartum), mid- (Day 135 postpartum), and late stage of lactation (Day 195 postpartum). The pre-treatment study was conducted on the starting day of each stage of lactation and the treatment study was performed after the end of the pre-treatment, during which the animal was injected with 500 mg of rbST (POSILAC) every 14 days for three times. During the study, ambient temperature at the hottest period daily in the MF barn was significantly lower, while relative humidity was higher than that of the NS barn. The temperature humidity index (THI) in both barns ranged from 79-85 throughout the periods of study. Cows in the MF barn showed a lower rectal temperature and respiration rate as compared with cows in the NS barn. The effect of rbST administration increased both rectal temperature and respiration rates of cows housed in either the NS or MF barn. Milk yield significantly increased in cows treated with rbST in all stages of lactation. Increases in mammary blood flow, accompanied by increases of total body water (TBW), extracellular fluid (ECF), blood volume (BV) and plasma volume (PV), were observed in both groups of cows receiving rbST in all stages of lactation. No alterations of renal blood flow and glomerular filtration rate were observed in cows receiving rbST, but decreases in urinary excretion and fractional excretion of sodium, potassium and chloride ions appeared to correlate with reduction in the rate of urine flow and osmolar clearance during rbST administration. These results suggest that the effect of rbST supplementation to cows housed either in NS or MF barns on body fluid volume expansion is attributable to changes in the rate of electrolyte excretion by the kidney. The increased availability of renal tubular reabsorption of sodium, potassium and chloride ions during rbST treatment was a major factor in retaining body water through its colligative properties in exerting formation of an osmotic force mechanism.

Selection of (Ac/Ds) insertion mutant lines by abiotic stress and analysis of gene expression pattern of rice (Oryza sativar L.) (비생물학적 스트레스 관련 벼 Ac/Ds 삽입 변이체의 선발 및 유전자 발현 분석)

  • Jung, Yu-Jin;Park, Seul-Ah;Ahn, Byung-Ohg;Yun, Doh-Won;Ji, Hyeon-So;Lee, Gang-Sup;Park, Young-Whan;Suh, Seok-Cheol;Baek, Hyung-Jin;Lee, Myung-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.307-316
    • /
    • 2008
  • Transposon-mediated insertional mutagenesis is one of powerful strategy for assessing functions of genes in higher plants. In this report, we have selected highly susceptible and tolerance plant by screening about high salt (3% NaCl) and cold stresses ($4^{\circ}C$) from F2 seeds of 30,000 Ac/Ds insertional mutagenesis lines in rice (Oryza sativa L. cv. Dongjin). In order to identify the gene tagging, insertion of Ds element was analyzed by Southern blot and these results revealed that 19 lines were matched genotype of selected lines with phenotype from the first selected 212 lines, and 13 lines have one copy of Ds elements. The Franking Sequence Tags (FSTs) of selected mutant lines showed high similarities with the following known function genes: signal transduction and regulation of gene expression (transpoter, protease family protein and apical meristem family protein), osmotic stress response (heat shock protein, O-methyltransferase, glyceraldehyde-3-phosphate dehydrogenase and drought stress induce protein), vesicle trafficking (SYP 5 family protein) and senescence associated protein. The expression pattern of 19 genes were analyzed using RT-PCR under the abiotic stresses of 9 class; 250mM NaCl, osmotic, drought, 3% $H_2O_2$, $100{\mu}M$ ABA, $100{\mu}M$ IAA, 0.1 ppm 2,4-D, $4^{\circ}C$ cold and $38^{\circ}C$ high temperature. Isolated knock-out genes showed the positive response about 250 mM NaCl, drought, $H_2O_2$, PEG, IAA, 2,4-D, ABA treatment and low ($4^{\circ}C$) and high temperature ($38^{\circ}C$). The results from this study indicate that function of selected knock-out genes could be useful in improving of tolerance to abiotic stresses as an important transcriptional activators in rice.

Analysis of Putative Downstream Genes of Arabidopsis AtERF71/HRE2 Transcription Factor using a Microarray (마이크로어레이를 이용한 애기장대 AtERF71/HRE2 전사인자의 하위 유전자 분석)

  • Seok, Hye-Yeon;Lee, Sun-Young;Woo, Dong-Hyuk;Park, Hee-Yeon;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1359-1370
    • /
    • 2012
  • Arabidopsis AtERF71/HRE2, a transcription activator, is located in the nucleus and is involved in the signal transduction of low oxygen and osmotic stresses. In this study, microarray analysis using AtERF71/HRE2-overexpressing transgenic plants was performed to identify genes downstream of AtERF71/HRE2. A total of 161 different genes as well as AtERF71/HRE2 showed more than a twofold higher expression in AtERF71/HRE2-overexpressing transgenic plants compared with wild-type plants. Among the 161 genes, 24 genes were transcriptional regulators, such as transcription factors and DNA-binding proteins, based on gene ontology annotations, suggesting that AtERF71/HRE2 is an upstream transcription factor that regulates the activities of various downstream genes via these transcription regulators. RT-PCR analysis of 15 genes selected out of the 161 genes showed higher expression in AtERF71/HRE2-overexpressing transgenic plants, validating the microarray data. On the basis of Genevestigator database analysis, 51 genes among the 161 genes were highly expressed under low oxygen and/or osmotic stresses. RT-PCR analysis showed that the expression levels of three genes among the selected 15 genes increased under low oxygen stress and another three genes increased under high salt stress, suggesting that these genes might be downstream genes of AtERF71/HRE2 in low oxygen or high salt stress signal transduction. Microarray analysis results indicated that AtERF71/HRE2 might also be involved in the responses to other abiotic stresses and also in the regulation of plant developmental processes.

Effect of Changing Amniotic Fluid Osmolarity on the $Li^+$ Transport Through the Membrane Surrounding Amniotic Fluid in the Rabbit

  • Chang, Jin-Keun;Lee, Sang-Jin;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.27 no.1
    • /
    • pp.13-25
    • /
    • 1993
  • To study the regulation of amniotic fluid volume and electrolyte concentration by the Membranes surrounding the amniotic fluid, the rate of $Li^+$ disappearance from amniotic sac of expired fetuses were examined while increasing the amniotic volume and osmolarity in rabbits. After intraamniotic injection of 1 ml isosmotic saline (about 20% of the amniotic fluid volume) containing 15 mM LiCl and 0.5 g/L Censored, the time courses of $Li^+$ and Censored disappearance were determined. From there the $Li^+$ clearance through the extrafetal routes was estimated and compared with that obtained from living fetuses. The volume, $Na^+$ concentration and osmolarity of amniotic fluid were measured and their relationships with $Li^+$ disappearance were evaluated. The fellowing results were obtained: 1. The rate of disappearance from amniotic fluid of living fetuses during the first 30 minutes was strikingly higher for $Li^+$ than for Censored, suggesting that extrafetal routes exist. At 60 and 90 minutes, however, the disappearance rate of $Li^+$ was less than that of Censored, suggesting the possibility of $Li^+$ reentry through fetal urination. 2. The disappearance of $Li^+$ from the amniotic fluid of the expired fetus was substantial, although lower than that of living fetuses, throughout the experimental period. 3. The $Na^+$ concentration and the osmolarity of the amniotic fluid of expired fetus measured 30 minutes after an intraamniotic injection of isoosmotic saline showed wide variation, but thereafter they changed gradually towards the normal extracellular fluid level. 4. When the amniotic fluid was iso- or hyposmolar, the rate of $Li^+$ disappearance from the amniotic fluid of the expired fetuses showed little variation. However, when the amniotic fluid was hyperosmolar, the rate at 30 minutes was markedly lower than those of isosmotic or hyposmotic amniotic fluid. At 90 minutes, the rate of $Li^+$ disappearance in hyperosmolar fluid reached a similar level to the rate in isosmolar fluid. 5. The intraamniotic injection of 400 mOsm/L saline solution decreased the disappearance rate of $Li^+$ from expired fetuses, while the injection of mannitol into the maternal vein induced no significant change. From these results it is concluded that: 1) a significant amount of $Li^+$ may leave the amniotic fluid via filtration through the membranes surrounding the amniotic fluid, 2) during hyperosmolar challenge to amniotic fluid, osmotic bulk flow might counteract the filterable loss, and 3) $Li^+$ disappearance might continue even after the volume and osmolarity of the amniotic fluid have recovered to control values.

  • PDF

Effect of Soil Salinity on Nitrate Accumulation of Lettuce (토양 염류집적이 상추의 Nitrate 축적에 미치는 영향)

  • Jin, Sun-Jae;Cho, Hyun-Jong;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.91-96
    • /
    • 2004
  • Accumulation of nitrate in edible crops is undesirable due to potential risks to human health. Since nitrate has a role in the osmotic regulation of plants, salt accumulation in soil is expected to stimulate nitrate accumulation in plants. Lettuce (Lactuca sativa L.) was grown in soils of different salinities, 9.69 and $4.49dS\;m^{-1}$, in a greenhouse, and the effect of soil salinity on nitrate accumulation in lettuce was investigated. Content of nitrate in the lettuce increased significantly as soil salinity increased under low light intensity and ample supply of nitrate in root media. Soluble sugar and oxalate contents in lettuce were also significantly higher in the soil of higher salinity. Phosphate, Cl, and $SO_4$ contents in lettuce were not significantly different in soils of different salinities. Among the cations, K content in lettuce was significantly higher in the soil of higher salinity, but Na, Ca, and Mg comtents were not much influenced. Comparing to the lettuce grown in low salinity soil, although the growth of lettuce was decreased by 9% in the soil of higher salinity, nitrate accumulation in the lettuce was increased by 18.6%. These results indicate that higher nitrate content in lettuce of higher salinity soil is a positive accumulation to adapt to the water stress condition. The nitrate accumulation of vegetables grown in plastic film houses is known to be due to the heavy fertilization and low light intensity, but salt accumulation in the soil, which can lower soil water potential, is expected to stimulate the nitrate accumulation further.