DOI QR코드

DOI QR Code

Effect of Diet and Water Intake on Aquaporin 2 Function

  • Kim, Jun-Mo (Department of Urology, School of Medicine, Soonchunhyang University) ;
  • Kim, Tae-Hee (Department of Obstetrics and Gynecology, School of Medicine, Soonchunhyang University) ;
  • Wang, Tong (Department of Cellular and Molecular Physiology, School of Medicine, Yale University)
  • Received : 2016.03.20
  • Accepted : 2016.03.22
  • Published : 2016.04.30

Abstract

Appropriate control of diet and water intake is important for maintaining normal blood pressure, fluid and electrolyte homeostasis in the body. It is relatively understood that the amount of sodium and potassium intake directly affects blood pressure and regulates ion transporters; Na and K channel functions in the kidney. However, little is known about whether diet and water intake regulates Aquaporin (AQP) function. AQPs, a family of aquaporin proteins with different types being expressed in different tissues, are important for water absorption by the cell. Water reabsorption is a passive process driven by osmotic gradient and water permeability is critical for this process. In most of the nephron, however, water reabsorption is unregulated and coupled to solute reabsorption, such as AQP1 mediated water absorption in the proximal tubule. AQP2 is the only water channel founded so far that can be regulated by hormones in the kidney. AQP2 expressed in the apical membrane of the principal cells in the collecting tubule can be regulated by vasopressin (antidiuretic hormone) controlling the final volume of urine excretion. When vasopressin binds to its receptor on the collecting duct cells, it stimulates the translocation of AQP2 to the membrane, leading to increased water absorption via this AQP2 water channel. However, some studies also indicated that the AQP2 is also been regulated by vasopressin independent mechanism. This review is focused on the regulation of AQP2 by diet and the amount of water intake on salt and water homeostasis.

Keywords

References

  1. Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992;256:385-7. https://doi.org/10.1126/science.256.5055.385
  2. Kortenoeven ML, Fenton RA. Renal aquaporins and water balance disorders. Biochim Biophys Acta 2014;1840:1533-49. https://doi.org/10.1016/j.bbagen.2013.12.002
  3. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 2002;82:205-44. https://doi.org/10.1152/physrev.00024.2001
  4. Matsuzaki T, Yaguchi T, Shimizu K, Kita A, Ishibashi K, Takata K. The distribution and function of aquaporins in the kidney: resolved and unresolved questions. Anat Sci Int 2016 Jan 21. [Epub ahead of print].
  5. Stanton BA, Koeppen BM (2004) Solute and water transport along the nephron: tubular function. In: Bern RM, Levy MN, Koeppen BM, Stanton BA (eds) Physiology. Elsevier Mosby, St. Louis, pp 643-58.
  6. Tamma G, Goswami N, Reichmuth J, De Santo NG, Valenti G. Aquaporins, vasopressin, and aging: current perspectives. Endocrinology 2015;156:777-88. https://doi.org/10.1210/en.2014-1812
  7. Graugaard-Jensen C, Hvistendahl GM, Frokiaer J, Bie P, Djurhuus JC. Urinary concentration does not exclusively rely on plasma vasopressin. A study between genders. Gender and diurnal urine regulation. Acta Physiol (Oxf) 2014;212:97-105. https://doi.org/10.1111/apha.12337
  8. Juul KV, Klein BM, Sandstrom R, Erichsen L, Norgaard JP. Gender difference in antidiuretic response to desmopressin. Am J Physiol Renal Physiol 2011;300:F1116-22. https://doi.org/10.1152/ajprenal.00741.2010
  9. Preisser L, Teillet L, Aliotti S, Gobin R, Berthonaud V, Chevalier J, et al. Downregulation of aquaporin-2 and -3 in aging kidney is independent of V(2) vasopressin receptor. American journal of physiology Renal physiology 2000;279:F144-52. https://doi.org/10.1152/ajprenal.2000.279.1.F144
  10. Hofman MA, Swaab DF. Alterations in circadian rhythmicity of the vasopressin-producing neurons of the human suprachiasmatic nucleus (SCN) with aging. Brain research 1994;651:134-42. https://doi.org/10.1016/0006-8993(94)90689-0
  11. Stachenfeld NS, Splenser AE, Calzone WL, Taylor MP, Keefe DL. Sex differences in osmotic regulation of AVP and renal sodium handling. Journal of applied physiology 2001;91:1893-901. https://doi.org/10.1152/jappl.2001.91.4.1893
  12. Umenishi F, Summer SN, Cadnapaphornchai M, Schrier RW. Comparison of three methods to quantify urinary aquaporin-2 protein. Kidney International 2002;62:2288-93. https://doi.org/10.1046/j.1523-1755.2002.00686.x
  13. Baumgarten R, van de Pol MH, Deen PM, van Os CH, Wetzels JF. Dissociation between urine osmolality and urinary excretion of aquaporin-2 in healthy volunteers. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2000;15:1155-61. https://doi.org/10.1093/ndt/15.8.1155
  14. Buemi M, Bolignano D, Coppolino G, Di Pasquale G, Cosentini V, Campo S, et al. Aquaporin-2 (AQP2) urinary excretion and assumption of water with different mineral content in healthy subjects. Ren Fail 2007;29:567-72. https://doi.org/10.1080/08860220701392082
  15. Della Penna SL, Cao G, Fellet A, Balaszczuk AM, Zotta E, Cerrudo C, et al. Salt-induced downregulation of renal aquaporins is prevented by losartan. Regul Pept 2012;177:85-91. https://doi.org/10.1016/j.regpep.2012.05.090
  16. Graffe CC, Bech JN, Pedersen EB. Effect of high and low sodium intake on urinary aquaporin-2 excretion in healthy humans. Am J Physiol Renal Physiol 2012;302:F264-75. https://doi.org/10.1152/ajprenal.00442.2010
  17. Roxas B, Farjah M, Danziger RS. Aquaporin-2 transcript is differentially regulated by dietary salt in Sprague-Dawley and Dahl SS/Jr rats. Biochem Biophys Res Commun 2002;296:755-8. https://doi.org/10.1016/S0006-291X(02)00896-3
  18. Rai T, Sekine K, Kanno K, Hata K, Miura M, Mizushima A, et al. Urinary excretion of aquaporin-2 water channel protein in human and rat. J Am Soc Nephrol 1997;8:1357-62.
  19. Pedersen RS, Bentzen H, Bech JN, Pedersen EB. Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. American journal of physiology Renal Physiology 2001;280:F860-7. https://doi.org/10.1152/ajprenal.2001.280.5.F860
  20. Song J, Hu X, Shi M, Knepper MA, Ecelbarger CA. Effects of dietary fat, NaCl, and fructose on renal sodium and water transporter abundances and systemic blood pressure. Am J Physiol Renal Physiol 2004;287:F1204-12. https://doi.org/10.1152/ajprenal.00063.2004
  21. Saito T, Ishikawa SE, Sasaki S, Nakamura T, Rokkaku K, Kawakami A, et al. Urinary excretion of aquaporin-2 in the diagnosis of central diabetes insipidus. The Journal of Clinical Endocrinology and Metabolism 1997;82:1823-7.
  22. Elliot S, Goldsmith P, Knepper M, Haughey M, Olson B. Urinary excretion of aquaporin-2 in humans: a potential marker of collecting duct responsiveness to vasopressin. Journal of the American Society of Nephrology: JASN 1996;7:403-9.
  23. Starklint J, Bech JN, Pedersen EB. Down-regulation of urinary AQP2 and unaffected response to hypertonic saline after 24 hours of fasting in humans. Kidney Int 2005;67:1010-8. https://doi.org/10.1111/j.1523-1755.2005.00164.x
  24. Buemi M, Di Pasquale G, Ruello A, Floccari F, Aloisi C, Latassa G, et al. Effect of a prostacyclin analogue, iloprost, on urinary aquaporin-2 excretion in humans. Nephron 2002;91:197-202. https://doi.org/10.1159/000058392
  25. Kim SW, Kim JW, Choi KC, Ma SK, Oh Y, Jung JY, et al. Indomethacin enhances shuttling of aquaporin-2 despite decreased abundance in rat kidney. Journal of the American Society of Nephrology: JASN 2004;15:2998-3005. https://doi.org/10.1097/01.ASN.0000145877.28811.82
  26. Amlal H, Krane CM, Chen Q, Soleimani M. Early polyuria and urinary concentrating defect in potassium deprivation. American Journal of Physiology Renal Physiology 2000;279:F655-63. https://doi.org/10.1152/ajprenal.2000.279.4.F655
  27. Nguyen MT, Yang LE, Fletcher NK, Lee DH, Kocinsky H, Bachmann S, et al. Effects of K+-deficient diets with and without NaCl supplementation on Na+, K+, and H2O transporters' abundance along the nephron. American Journal of Physiology Renal Physiology 2012;303:F92-104. https://doi.org/10.1152/ajprenal.00032.2012
  28. Bhasin B, Velez JC. Evaluation of Polyuria: The Roles of Solute Loading and Water Diuresis. American journal of kidney diseases : the official journal of the National Kidney Foundation 2016;67:507-11. https://doi.org/10.1053/j.ajkd.2015.10.021
  29. Popli S, Tzamaloukas AH, Ing TS. Osmotic diuresis-induced hypernatremia: better explained by solute-free water clearance or electrolyte-free water clearance? International Urology and Nephrology 2014;46:207-10. https://doi.org/10.1007/s11255-012-0353-3
  30. Sands JM, Naruse M, Jacobs JD, Wilcox JN, Klein JD. Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet. The Journal of Clinical Investigation 1996;97:2807-14. https://doi.org/10.1172/JCI118736
  31. Elfers K, Breves G, Muscher-Banse AS. Modulation of aquaporin 2 expression in the kidney of young goats by changes in nitrogen intake. Journal of comparative physiology B, Biochemical, systemic, and environmental physiology 2014;184:929-36. https://doi.org/10.1007/s00360-014-0849-5
  32. Lauridsen TG, Vase H, Starklint J, Bech JN, Pedersen EB. Proteinenriched diet increases water absorption via the aquaporin-2 water channels in healthy humans. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2010;25:2502-10. https://doi.org/10.1093/ndt/gfq111
  33. Valenti G, Laera A, Pace G, Aceto G, Lospalluti ML, Penza R, et al. Urinary aquaporin 2 and calciuria correlate with the severity of enuresis in children. Journal of the American Society of Nephrology: JASN 2000;11:1873-81.
  34. Valenti G, Laera A, Gouraud S, Pace G, Aceto G, Penza R, et al. Low-calcium diet in hypercalciuric enuretic children restores AQP2 excretion and improves clinical symptoms. American Journal of Physiology Renal physiology 2002;283:F895-903. https://doi.org/10.1152/ajprenal.00354.2001
  35. Tamma G, Di Mise A, Ranieri M, Svelto M, Pisot R, Bilancio G, et al. A decrease in aquaporin 2 excretion is associated with bed rest induced high calciuria. Journal of Translational Medicine 2014;12:133. https://doi.org/10.1186/1479-5876-12-133

Cited by

  1. Chronic chloroquine and ethanol administration causes detrimental renal morphological changes in rats fed low protein vol.38, pp.3, 2016, https://doi.org/10.5937/afmnai38-29628
  2. Differential effects of sodium chloride and monosodium glutamate on kidney of adult and aging mice vol.11, pp.1, 2016, https://doi.org/10.1038/s41598-020-80048-z