• Title/Summary/Keyword: osmosis membrane

Search Result 375, Processing Time 0.037 seconds

Comparisons of Reverse Osmosis and Pervaporation Membrane Processes. I. Theoretical Interpretations. (역삼투와 투과 증발막 공정의 비교. I. 이론적 해석)

  • Rhim, Ji-Won;Lee, Kew-Ho;Bae, Seong-Youl;H
    • Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 1993
  • Reverse osmosis(RO) and pervaporation(PV) membrane processes were compared with each other theoretically by using Paul and Ebra-Lima model. From this model the concentrations of liquid within the membrane when pressure was applied to the upper compartment(for PV case, the applied pressure is infinite) were calculated for rubber membrane-n-hexane and rubber membrane-benzene systems. The permeabilities of RO and PV were also calculated and compared for polyethylene film-n- hexane and polyethylene film- benzene systems Theoretically, the permeabilities of PV membrane were greater than those of RO membrane.

  • PDF

Two Dimensional (2D) Nanomaterials based Composite Membrane for Desalination (2차원 나노재료 기반 복합막을 이용한 해수담수화)

  • Lee, Yu Kyung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.111-123
    • /
    • 2020
  • Growing industrialization and climate change lead to the huge demand for clean drinking water. Desalination of sea water by membrane separation process is one of the alternative and economically viable methods to fulfil the demand for water. In the membrane separation process, the presence of 2D materials enhances the performance of membrane by facilitating the water permeation, salt rejection, flux rate, and selectivity compared to the traditional reverse osmosis thin-film-composite membranes. In this review, composite membranes with different kinds of 2D materials are discussed on the basis of materials synthesis, characterization and desalination process.

Comprehensive Analysis of Major Factors Associated with the Performance of Reverse Osmosis Desalination Plant for Energy-saving (에너지 소모를 고려한 역삼투 해수담수화 플랜트 주요 성능인자 영향 분석)

  • Kim, Jihye;Lee, Kyung-Hyuk;Lim, Jae-Lim
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.314-322
    • /
    • 2019
  • A worsened drought in Chungnam province of Korea due to climate change and increasing water demand at Daesan industrial complex have motivated the 100,000 ㎥/d seawater desalination project. In this study, therefore, the comprehensive analysis of parameters affecting the reverse osmosis (RO) performance was conducted. Under the various conditions of feedwater salinity and temperature in Daesan, energy consumption was calculated as 2.39 ± 0.13 kWh/㎥. The decrease in membrane flux and recovery rate positively impacted annual operation cost. The average total dissolved solids (TDS) of the permeate and energy consumption with highly permeable membrane according to the membrane manufacturer were 3.84 mg/L and 2.22 ± 0.13 kWh/㎥, respectively. In addition, energy saving up to 0.29 kWh/㎥ or cost reduction of membrane module up to 15.6% is expected by changing the RO configuration from full two pass to partial or split partial two pass.

Preparation and Characterization of Cellulosic Forward Osmosis Membranes (셀룰로오스 계 고분자를 이용한 정삼투막의 제조 및 특성)

  • Jeong, Bo-Reum;Kim, Jong-Hak;Kim, Beom-Sik;Park, Yoo-In;Song, Du-Hyun;Kim, In-Chul
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.222-227
    • /
    • 2010
  • The purpose of this study is to prepare forward osmosis (FO) membranes using a variety of cellulose-based polymers and to evaluate the performance of difference depending on each of the polymers and additives. Forward osmosis membranes based on cellulose acetate (CA) and cellulose triacetate (CTA) were prepared through phase inversion. The performance of FO membranes developed, such as flux and salt rejection, was compared under the osmotically- and pressure-driven conditions. In CA FO membranes, the execution time of solvent evaporation and membrane annealing induced the change in membrane performance. But the performance of CTA FO membrane was improved by using additives rather than annealing. Moreover, the flux of CTA FO membrane was $4.46\;L/m^2hr$ but that of CA/CTA FO membrane was $8.89\;L/m^2hr$ in FO mode. The CTA FO membrane with blending CA was more efficient to increase FO permeate flow rather than using a single polymer membrane.

An Application of the Analytic Hierarchy Process to the Selection of the Membrane Systems of Waste Water Treatment (AHP를 이용한 폐수정화공정의 막기술 선정에 관한 연구)

  • Hong, Soon-Wook;Kim, Gang-Min;Kim, Tae-Hyun;Cho, Keun-Tae
    • IE interfaces
    • /
    • v.12 no.4
    • /
    • pp.602-616
    • /
    • 1999
  • Recently, due to the primary emphasis of environmental problem, the proper selection of the membrane systems necessary for waste water treatment has been one of the critical issues in the industrial sector. This paper shows how an Analytic Hierarchy Process (AHP) model can be used for assessing the performance of selected membrane systems: ultrafiltration, microfiltration, reverse osmosis, and electrodialysis essential for waste water treatments. The final results show that ultrafiltration is the most attractive membrane system to use in a water recycling system, followed by microfiltration, reverse osmosis and electrodialysis. This is consistent with the information that we found with respect to the elements that were taken into consideration. Sensitivity analysis is also provided here.

  • PDF

Analysis of the Salt Separation and Concentration Using Counter-current Reverse Osmosis Spiral Wound Module (향류식 역삼투 나권형 모듈을 이용한 염분리농축 특성 해석)

  • 조한욱;민병렬;최광호
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.142-151
    • /
    • 1994
  • Counter-current type reverse osmosis spiral wound module was manufactured for the separation and concentration of salf solution. The ratio of permeate volumetric flow rate vs. brine volumetric flow rate was effective parameter between rejection and degree of cocentration. The reflection coefficient was correspondent to the relation between rejection and degree of cocentration by Spiegler-Kedem model. Counter-current reverse osmosis process had more osmotic pressure drop effect and more degree of concentration than general reverse osmosis process. As a result of computer calculation, the extension of module length than module diameter was more effective for the increase of degree of concentration.

  • PDF

Application in Membrane Hybrid System with Acrylic Wastewater Pretreated by $TiO_2$ ($TiO_2$로 전처리한 아크릴 폐수의 Membrane Hybrid System에의 적용)

  • Lee, Kwang-Hyun;Kang, Byung-Chul;Lee, Jong-Baek;Lee, Gang-Choon
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.183-188
    • /
    • 2009
  • After membrane fouling factors in acrylic wastewater were minimized by pretreatment process accompanied with $TiO_2$, it was utilized in MF/UF/RO process. After composing of ultrafiltration/reverse osmosis or microfiltration/reverseosmosiss module set according to types and kinds of membrane, the separation characteristics were examined with the variation temperature and pressure using pretreated acrylic wastewater by membrane module sets. The permeate of ultrafiltration or microfiltration module was sent to reverse osmosis module. It was found that final permeate flux of reverse osmosis module in module set 2 (MWCO 200,000 UF+RO) was excellent. It was shown that the removal efficiency of TDS, T-N and COD was very low and was not dependent on the variation of temperature and pressure in UF and MF modules. From the above result, the removal efficiency of TDS, T-N and COD was very excellent in RO module. The removal efficiency of turbidity in UF and MF module was very high (> 99% removal efficiency). Final water quality of acrylic wastewater treated by the membrane module set was satisfied with effluent allowances limit and membrane module sets were ascertained to reuse wastewater.

Graphene Oxide Incorporated Antifouling Thin Film Composite Membrane for Application in Desalination and Clean Energy Harvesting Processes (해수담수화와 청정 에너지 하베스팅을 위한 산화 그래핀 결합 합성 폴리머 방오 멤브레인)

  • Lee, Daewon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.16-34
    • /
    • 2021
  • Water supplies are decreasing in comparison to increasing clean water demands. Using nanofiltration is one of the most effective and economical methods to meet the need for clean water. Common methods for desalination are reverse osmosis and nanofiltration. However, pristine membranes lack the essential features which are, stability, economic efficiency, antibacterial and antifouling performances. To enhance the properties of the pristine membranes, graphene oxide (GO) is a promising and widely researched material for thin film composites (TFC) membrane due to their characteristics that help improve the hydrophilicity and anti-fouling properties. Modification of the membrane can be done on different layers. The thin film composite membranes are composed of three different layers, the top filtering active thin polyamide (PA) layer, supporting porous layer, and supporting fabric. Forward osmosis (FO) process is yet another energy efficient desalination process, but its efficiency is affected due to biofouling. Incorporation of GO enhance antibacterial properties leading to reduction of biofilm formation on the membrane surface. Pressure retarded osmosis (PRO) is an excellent process to generate clean energy from sea water and the biofouling of membrane is reduced by introduction of GO into the active layer of the TFC membrane. Different modifications on the membranes are being researched, each modification with its own advantages and disadvantages. In this review, modifications of nanofiltration membranes and their composites, characterization, and performances are discussed.

Performance Analysis of Plate-and-Frame Forward Osmosis Membrane Module for Concentrating High Salinity Wastewater (고염도 폐수 농축을 위한 평판형 정삼투막 모듈의 성능 분석)

  • Kim, Yu Chang;Lee, Sungyun;Park, Sang-Jin;Kim, Han Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.68-74
    • /
    • 2016
  • Hydraulic fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates larger volumes of contaminated wastewater with high salinity. It is critical to treat and reuse the O&G wastewater in a cost-effective and environmentally sound manner for sustainable industrial development and for meeting stringent regulations. Recently, forward osmosis (FO) has been examined if it is a promising solution for treatment and desalination of complex industrial streams and especially fracturing flowback and produced waters. In the present study, the performances of a plate-and-frame FO membrane element and a module (6 elements combined in series) were investigated for concentrating high TDS wastewater. An FO module has achieved up to 64 % water recovery (i.e., concentration factor of 2.76) from 10,000 ppm wastewaters and can concentrate feed streams salinities to greater than 30,500 ppm.

Effect of MWCNTs/PSf support layer on the performance of polyamide reverse osmosis membrane (탄소나노튜브가 첨가된 폴리술폰 지지체가 폴리아미드 역삼투막의 성능에 미치는 영향)

  • Min, Choong-Sik;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • In this study, a MWCNT(multi-wall carbon nanotube) was added to polysulfone(PSf) support layer to improve flux of TFC(thin film composite) RO(reverse osmosis) membrane. Two different kinds of MWCNT were used. Surfaces of some MWCNTs were modified hydrophilically through acid treatment, while those of other MWCNTs were modified through heat treatment to maintain their hydrophobicity. MWCNT/PSf support layer was prepared by adding PSf to the NMP mixed solvent containing 0.1 wt% MWCNTs using a phase inversion method. The surface porosity of the MWCNT/PSf support increased by 42~46% while its surface pore size being maintained. The TFC RO membrane made of MWCNT/PSf support layer showed a 20% flux increase while its salt rejection characteristics is sustained. In addition, the MWCNT/PSf support layer has better mechanical stability than the PSf support layer, there resulting in an increased resistance of flux reduction due to physical pressure.