• Title/Summary/Keyword: oscillometric

Search Result 49, Processing Time 0.028 seconds

Automatic blood pressure measurement device using oscillometric method and Korotkoff sounds

  • Wei, Ran;Lim, Young Chul;Im, Jae Joong
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.20-25
    • /
    • 2012
  • The oscillometric method and Korotkoff sound method are the most common ways to measure the blood pressure. A new automatic blood pressure measurement device, which uses both oscillometric method and Korotkoff method, was developed. A pressure sensor was used to obtain cuff pressure and oscillation signal, and a microphone was used to detect Korotkoff sounds. Forty-five measurements from fifteen subjects were used for analysis. Correlation coefficients between the traditional auscultatory method and Korotkoff sound method were 0.9820 and 0.9721 for the systolic and diastolic blood pressure values, respectively. Standard deviations of differences for the systolic and diastolic blood pressure values were 1.3019 and 1.4495, respectively. Correspondingly, correlation coefficients between the traditional auscultatory method and oscillometric method using newly developed algorithm were 0.9651 and 0.9136 for the systolic and diastolic blood pressure values, with the standard deviations of 1.42 and 1.73, respectively. The results showed that the newly developed algorithm for oscillometirc method provide accurate blood pressure values, moreover, Korotkoff sound method using microphone provides even higher accuracy. Therefore, a new automatic device which utilizes both oscillometric method and Korotkoff sound method would provide the accurate and reliable blood pressure values.

The Development of a Cuff for the Accuracy Enhancement of the Sphygmomanometer

  • Kim, Won-Ki;Shin, Ki-Young;Mun, Joung-Hwan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.30-35
    • /
    • 2006
  • The purpose of this study is to develop a new cuff to improve the accuracy of blood pressure measurement, and to evaluate the performance of the developed system. We added a small bladder to the normal cuff, which we refer to as the double bladder system. The system that we developed for blood pressure measurement was based on the oscillometric method using a double bladder. This system was developed in order to reduce the oscillation noise and to amplify the signal of pure blood pressure. An oscillometric signal database based on the developed system was evaluated according to the ANSI/AAMI/SP10-1992 standard. The correlation coefficients between the cuff of the double bladder and the normal cuff were 0.98 for systolic pressure and 0.94 for diastolic pressure. The mean differences and the standard deviations between the average blood pressure obtained from a mercury manometer and that obtained from an automated sphygmomanometer were -0.7mmHg and 4.9mmHg for systolic, and -1.4mmHg and 5.4mmHg for diastolic pressure. We conclude that the proposed double bladder-based cuff system improves the accuracy of oscillometric blood pressure measurement. The developed system reduces the range of error by about $44{\sim}62%$ for systolic pressure and about $6{\sim}21%$ for diastolic pressure compared to the most recently developed, commercially available sphygmomanometers.

The Development of a Cuff for the Accuracy Enhancement of Sphygmomanometer (전자 혈압계의 정확도 향상을 위한 가압대 개발)

  • Kim Won Ki;Shin Ki Young;Mun Joung Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.181-188
    • /
    • 2005
  • The purpose of this study is to develop the new cuff improving the accuracy of blood pressure measurement, and to evaluate the performance of the developed system. We added a small bladder to the normal cuff which is called the double bladder system. The developed system for blood pressure measurement was based on the oscillometric method using a double bladder. This system was developed in order to reduce the oscillation noise and to amplify the signal of pure blood pressure An oscillometric signal database based on the developed system were evaluated following the standard ANSI/AAMI/SP10-1992. The correlation coefficients between cuff of double bladder and normal cuff were 0.98 for systolic and 0.94 for diastolic. Mean differences and the standard deviations between average blood pressure of mercury sphygmomanometer and automated sphygmomanometer were -0.7mmHg and 4.9mmHg for systolic, and -1.4mmHg and 5.4mmHg for diatolic, respectively. We conclude that the proposed double bladder based cuff system improves the accuracy of the oscillometric blood pressure measurement. The developed system reduces the error range about $44\~62\%$ for systolic and about $6\~21\%$ for diastolic compared to the recently developed commercially available sphygmomanometers.

Implementation of Noninvasive Blood Pressure Measuring System for Home Health Care Using Oscillometric Method (오실로메트릭법을 적용한 홈헬스케어용 비침습적 혈압측정법의 구현)

  • Kang Seong-Chul;Jeon Gye-Rock;Jeong Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.689-692
    • /
    • 2006
  • In this study, an implementation of a system for measuring more accurate blood pressure by non-invasive methods of oscillometric was performed to reduce errors and weaknesses of the existing invasive blood pressure measurement methods. The system is composed of pressure control, signal measurement and blood pressure signal processing units. To verify the validity of the system, tests of characteristics evaluations for pressure measurement unit, extraction of characteristic ratios for blood pressure estimation, blood pressure tracking by oscillometric method were performed. A group of five adult male was selected for the clinical test of the implemented system. The results of the oscillometric method in comparison with auscultatory method are that the maximum ratios of PAD of average, systolic and diastolic arterial pressure are 1.38%, 1.63% and 2.97% with SEP of 5.00, 3.72 and 4.34.

  • PDF

Development of Blood Pressure Estimation Algorithm Using Variable Characteristic Ratios on Oscillometric Method (진동법에서 가변 특성 비를 이용한 혈압 추정 알고리즘의 개발)

  • Shin, Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.510-515
    • /
    • 2009
  • In this paper, variable characteristic ratio algorithm based on oscillometric method is proposed to enhance the accuracy of blood pressure measurement. We combined the slope-based approach and fuzzy inference technique to change the characteristic ratios of height-based method. The proposed algorithm was assessed on 255 measurements from 85 subjects and compared with the conventional height-based algorithm. The testing results showed that the developed algorithm achieved an overall grade A for both systolic and diastolic blood pressures according to the BHS protocol. And, mean standard deviation between the observers and the developed algorithm were 5.71mmHg and 6.29mmHg for systolic and diastolic pressures respectively, which also fulfilled the AAMI criteria. In conclusion, this algorithm was successfully developed and recommended for further clinical trials with the wider adult population.

Estimation of the Blood Pressure Using Point Variation Aspect of Dicrotic Notch on Pulsating Waveform at Each Cardiac Periods (주기별 맥동파형의 절흔점 위치변화 특성을 이용한 혈압 추정)

  • Baik, Seongwan;Park, Sungmin;Shon, Jungman;Park, Geunchul;Lee, Sanghoon;Jang, Wooyoung;Jeon, Ahyoung;Jeon, Gyerok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • In the study, novel blood pressure estimation method was proposed to improve the accuracy of oscillometric method. The proposed algorithm estimated the blood pressure by comparing and analyzing the point variation aspect of dicrotic notch on pulsating waveform during each cardiac cycle. The waveforms of each cardiac cycle were extracted by maximum points. The extracted pulsating waveforms were applied by re-sampling, end-matching, and normalization. The systolic and diastolic blood pressures were estimated by point variation aspect of dicrotic notch. The blood pressures, which were estimated from proposed algorithm, were compared and analyzed by blood pressures from oscillometric methods and auscultation. The systolic blood pressure from oscillometric methods were +0.88 mmHg more than proposed algorithm, and 1.875 less than the diastolic blood pressures from proposed algorithm. The systolic and diastolic blood pressures from auscultation were 2.89 mmHg and 3.44 mmHg less than the blood pressures from proposed algorithm. As the errors between blood pressures from proposed algorithm, oscillometric method and auscultation were less than 5 mmHg, the proposed algorithm was effective.

Blood Pressure Measurement using the Modified Step-wise Deflation Method (개선된 계단 배기 방법을 이용한 혈압 측정)

  • Oh, Hong-Sic;Lee, Jong-Shill;Chee, Young-Joon;Kim, In-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.351-358
    • /
    • 2010
  • In the automatic non-invasive blood pressure measurement device, the oscillometric method iswidely used. In the oscillometric method, the step-wise deflation has the advantage of the robustness for the motion artifacts than the linear deflation method. But it has the disadvantage of its longer measurement time because we need to detect two or more pulses in a certain cuff pressure step. In this study, we suggest the modified step-wise deflation method to overcome this limitation while maintaining the general concept of step-wise deflation. Using one valid pulse in each step and the deflating valve control during the diastolic period, the measurement time could be reduced. In order to verify the accuracy of the proposed algorithm, we compared the blood pressure values from the suggested method and the blood pressure values from the conventional auscultation method. The mean and standard deviation were -0.50${\pm}$5.3mmHg and 2.08${\pm}$4.75mmHg, for systolic and diastolic blood pressure respectively. The measurement time can be reduced up to the half of conventional step-wise deflation method.

Design of Noninvasive Arterial Blood Pressure Measurement System by Using Double-Cuffs Oscillometric Method (이중 커프 오실로메트릭법을 이용한 비침습 동맥압 측정시스템의 설계)

  • Lee, Pil-Jae;Lee, Young-Jae;Kim, Dong-Jun;Lee, Jae-Ho;Lim, Min-Gyu;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.885-890
    • /
    • 2012
  • In this study, a new blood pressure measuring system was proposed and implemented. An additional small-cuff was placed on the center of a inner cuff to measure morphological signals and new oscillometric ratio. The proposed BP-measuring system is composed of an external cuff, an inner cuff and a small-cuff. Oscillation signal from small-cuff is interpolated with 7th-order fitting polynomials and SBP, DBP ratio were 22.2% and 87.7%. Experimental data were gathered from 20 volunteers ($25{\pm}4$ years) and arterial blood pressure values were compared with auscultation, sphygmomanometers, small-cuff and inner-cuff. As a result, the difference in systolic BP between auscultation and the small-cuff was 1.93(${\pm}1.28$) mmHg, and the inner-cuff was 4.53(${\pm}4.39$) mmHg, and sphygmomanometer was 6.68(${\pm}3.99$) mmHg, and the corresponding difference in diastolic BP was 2.50(${\pm}2.04$) mmHg, 3.50(${\pm}3.19$) mmHg, 7.35(${\pm}5.62$), respectively.

Estimation of Non- Invasive Blood Pressure Using Peripheral Plethysmograph (말초혈관 혈류 측정을 이용한 비관혈적 혈압 추정법에 대한 연구)

  • Jeong In-cheol;Shin Tae-min;Yoon Hyung-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.504-509
    • /
    • 2005
  • This paper presents a new method for obtaining the noninvasive and unrestrained blood pressure readings noninvasively and unrestrainedly using based on reflected wave arrival time(RAT) in the volume of pulse. Since this new method employs only volume pulse, is more rapider and simpler than the method using pulse transit time(PTT) because it only employs the volume of pulse. Blood pressure, PTT and RAT were acquired from 15 healthy subjects. Each subjects were performed forty trials of each measurement. As a result of those trials, the mean error between oscillometric and RAT measurements for systolic blood pressure was $4.55\pm5.64mmHg$. This result showed quite equal with the mean error between oscillometric and PPT measurf:ments, $4.22\pm5.30mmHg$, However, it was not obtained a satisfactory result in the relativity of oscillometric to both RAT and PPT measurements for diastolic blood pressure because of personal difference. To conclude, the method of systolic blood pressure estimation noninvasively and unrestrainedly using by RAT may be used as the method by PTT. Nevertheless, additional studies would be necessary for the RAT/PTT estimation of diastolic blood Pressure measurement.