• Title/Summary/Keyword: oscillatory flow

Search Result 234, Processing Time 0.025 seconds

Visualization of Vortex Lock-on to Oscillatory Incident Flow in the Cylinder Wake Using Time-Resolved PIV (고속 PIV계측에 의한 실린더 근접후류 공진 유동 가시화)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1353-1361
    • /
    • 2001
  • Vortex lock-on or resonance behind a circular cylinder is visualized using a time-resolved PW when a single frequency oscillation is superimposed on the mean incident velocity. For vector processing, a cross-correlation algorithm in conjunction with a recursive correlation and interrogation window shifting techniques is used. Measurements are made of the Karmas and streamwise vertices in the wake-transition regime at Reynolds lumber 360. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. At the lock-on state, the Karman vortices are observed to be more disordered by the increased strength and spanwise wavelength of the streamwiee vortices, which lead? to a strong three-dimensional motion.

  • PDF

Experimental Investigation of Unsteady Pressure Generated by Oscillating Outer Cylinder (진동하는 외부 실린더에 의해 유발되는 비정상 압력의 실험적 고찰)

  • 심우건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.519-526
    • /
    • 1995
  • Experiments have been performed to test the analytical tools developed concurrently for the motion-related unsteady pressure in annular passages. The outer cylindrical body was oscillated by a shaker in either rocking motion about a hinge-point or lateral translation motion. In the equilibrium configuration the two bodies are either concentric or eccentric, in the plane of oscillation or normal to it. The unsteady pressure generated by the oscillatory motion with low amplitudes (displacement/radius) was measured on wall of the fixed inner cylinder at various axial and azimuthal locations. The unsteady pressure were compared with theoretical predictions, and agreement was found to be within 10%. Experiments have been shown that the effect of flow velocity on the unsteady pressure is minimal and the pressure increases more or less with oscillatory motion, for low flow velocities (Re = 2 900).

Natural Convection of Low-Prandtl-Number Fluids in a Narrow Horizontal Annulus (좁은 수평 환형공간에서의 낮은 Prandtl 수 유체의 자연 대류)

  • Yoo, Joo-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1784-1795
    • /
    • 1998
  • Natural convection of low Prandtl number fluids with $Pr{\leq}0.2$ in a narrow horizontal annulus is numerically investigated. For $Pr{\leq}0.2$, hydrodynamic instability induces oscillatory multicellular flows consisting of multiple like-rotating cells. For a fluid with $Pr{\approx}0$, the region in which instability of conduction regime first forms is near the vertical section of annulus, and the multiple cells are distributed uniformly in the lower and upper regions of annulus. As Pr increases, however, the cells are shifted upwards. The like-rotating cells drift downward, as time goes on, and the speed of travel increases with increase of Pr. For a fluid with Pr=0.1, a flow with period-4 solution is observed between chaotic states.

Dynamic model of hinge deflection in fluid flow (유동 내 굽힘이 발생하는 힌지의 역학 모델)

  • Minho Song;Janggon Yoo;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.40-46
    • /
    • 2023
  • For application to drag-based propulsion system, the dynamics of a segmented structure with multiple hinges undergoing oscillatory motion are investigated. The side flaps are connected to a centre rod with elastic plates acting as hinges. The hinges bend to only one direction so that the structure behave asymmetrically between the power stroke and the recovery stroke. An analytical model is proposed, which estimates the asymmetric deformation of the segmented structure coupled with hinges. Using the proposed model, the effects of key geometric and kinematic parameters on the dynamics of the structure are analyzed.

The Effects of Flow Wave form on the Flow Characteristics in Tapered Vascular Grafts (유량 파형이 데이퍼형 인조혈관 유동에 미치는 영향)

  • Lee, H. C.;Seok, K. W.;Jon, C. W.;Lee, J.;Lee, Y. S.;Kim, S. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.337-346
    • /
    • 1996
  • The patency of small size vascular grafts is poor, and the blood flow characteristics in the artery graft anastomosis are suspected as one of the important factors influencing intimal hyperplasia. Disturbed flow patterns caused by sixte and compliance mismatch generate unfavorable flow environment which promotes intimal thickening. Tapered vascular yuts are suggested in order to reduce sudden expansion near the anastomosis. The photochromic flow visualization method is used to measure the flout fields in the end-to-end anastomosis model under the carotid and femoral artery flow wave form. The results show that flow disturbance near the anastomosis is diminished in the tapered grafts comparing to the tubular graft. As the divergent ang1e decreases, we can reduce the low and oscillatory wall shear stress zone which is prone to intimal hyperplasia. The flow wave form effects the wall shear rate dis- tribution significantly. The steep deceleration and back flow in the femoral flow wAve form cause low mean wall shear rate and high oscillatory shear index.

  • PDF

Wall Shear Stress Distribution in the Abdominal Aortic Bifurcation : Influence of wall Motion, Impedance Phase Angle, and non-Newtonian fluid (복부대동맥 분기관에서의 벽면전단응력 분포 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향)

  • Choi J.H.;Kim C.J.;Lee C.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.261-271
    • /
    • 2000
  • The present study investigated flow dynamics of a two-dimensional abdominal aortic bifurcation model under sinusoidal flow conditions considering wall motion. impedance phase angle(time delay between pressure and flow waveforms), and non-Newtonian fluid using computational fluid dynamics. The wall shear stress showed large variations in the bifurcated region and the wall motion reduced amplitude of wall shear stress significantly. As the impedance phase angle was changed to more negative values, the mean wall shear stress (time-averaged) decreased while the amplitude (oscillatory) of wall shear stress increased. At the curvature site on the outer wall where the mean wall shear stress approached zero. influence of the phase angle was relatively large. The mean wall shear stress decreased by $50\%$ in the $-90^{\circ}$ phase angle (flow wave advanced pressure wave by a quarter period) compared to the $0^{\circ}$ phase angle while the amplitude of wall shear stress increased by $15\%$. Therefore, hypertensive patients who tend to have large negative phase angles become more vulnerable to atherosclerosis according to the low and oscillatory shear stress theory because of the reduced mean and the increased oscillatory wall shear stresses. Non-Newtonian characteristics of fluid substantially increased the mean wall shear stress resulting in a less vulnerable state to atherosclerosis.

  • PDF