• Title/Summary/Keyword: oscillatory flow

Search Result 234, Processing Time 0.023 seconds

Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions (폴리에틸렌옥사이드 수용액의 동적 점탄성)

  • Song, Ki-Won;Bae, Jun-Woong;Chang, Gap-Shik;Noh, Dong-Hyun;Park, Yung-Hoon;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.295-307
    • /
    • 1999
  • Using a Rheometries Fluids Spectrometer (RFS II), the dynamic viscoelastic properties of aqueous poly(ethylene oxide) (PEO) solutions in small amplitude oscillatory shear flow fields have been measured over a wide range of angular frequencies. The angular frequency dependence of the storage and loss moduli at various molecular weights and concentrations was reported in detail, and the result was interpreted using the concept of a Deborah number De. In addition, the experimentally determined critical angular frequency at which the storage and loss moduli become equivalent was compared with the calculated characteristic time (or its inverse value), and their physical significance in analyzing the dynamic viscoelastic behavior was discussed. Finally, the relationship between steady shear flow and dynamic viscoelstic properties was examined by evaluating the applicability of some proposed models that describe the correlations between steady flow viscosity and dynamic viscosity, dynamic fluidity, and complex viscosity. Main results obtained from this study can be summarized as follows: (1) At lower angular frequencies where De<1, the loss modulus is larger than the storage modulus. However, such a relation between the two moduli is reversed at higher angular frequencies where De>l, indicating that the elastic behavior becomes dominant to the viscous behavior at frequency range higher than a critical angular frequency. (2) A critical angular frequency is decreased as an increase in concentration and/or molecular weight. Both the viscous and elastic properties show a stronger dependence on the molecular weight than on the concentration. (3) A characteristic time is increased with increasing concentration and/or molecular weight. The power-law relationship holds between the inverse value of a characteristic time and a critical angular frequency. (4) Among the previously proposed models, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. The Osaki relation can be regarded to some extent as a suitable model. However, the DeWitt, Pao and HusebyBlyler models are not applicable to describe the correlations between steady shear flow and dynamic viscoelastic properties.

  • PDF

RHEOLOGIC STUDY ON THE VISCOELASTIC PROPERTIES OF FLOWABLE AND CONDENSABLE RESIN COMPOSITES (유동성 및 응축성 복합레진의 점탄성에 관한 유변학적 연구)

  • Lee, In-Bog;Cho, Byeong-Hoon;Son, Ho-Hyun;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.359-370
    • /
    • 2000
  • The purpose of this investigation was to observe the viscoelastic properties of five commercial flowable(Aeliteflo, Flow it, Revolution, Tetric flow, Compoglass flow), three conventional hybrid(Z-100, Z-250, P-60) and two condensable(Synergy compact, SureFil) resin composites. A dynamic oscillatory shear test was done to evaluate the storage shear modulus (G'), loss shear modulus(G"), loss tangent(tan ${\delta}$) and complex viscosity(${\eta}^*$) of the resin composites as a function of frequency - dynamic frequency sweep test from 0.01 to 100 rad/s at $25^{\circ}C$ - by using Advanced Rheometric Expansion System(ARES). To investigate the effect on the viscosity of resin composites of filler volume fraction, the filler weight % and volume % were measured by means of Archimedes' principle using a pyknometer. The results were as follows 1. The complex viscosity ${\eta}^*$ of flowable resins was lower than that of hybrid resins and significant differences were observed between brands. The complex viscosity ${\eta}^*$ of condensable resins was higher than that of hybrid resins. The order of complex viscosity ${\eta}^*$ at ${\omega}$=10 rad/s was as follows, Surefil, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it, Revolution. The relative complex viscosity of flowable resins compared to Z-100 was 0.04~0.56 but Surefil was 30.4 times higher than that of Z-100. 2. The storage shear modulus G' and the loss shear modulus G" of flowable resins were lower than those of hybrid resins but those of condensable resins were higher. The patterns of the change of loss tangent, tan ${\delta}$, of resin composites with increasing frequency were significantly different between brands. The phase angles, ${\delta}$, ranged from $30.2{\sim}78.1^{\circ}$ at ${\omega}$=10 rad/s. 3. All composite resins represent pseudoplastic nature with increasing shear rate. 4. The complex shear modulus $G^*$ and the phase angle ${\delta}$ was represented by the frequency domain phasor form, $G^*({\omega})=G^*e^{i{\delta}}=G^*{\angle}{\delta}$. The locus of frequency domain phasor plots in a complex plane was a valuable method that represent the viscoelastic properties of composite resins. 5. There was no direct linear correlationship but a weak positive relation was observed between filler volume % or weight % and the viscosity of the resin composites.

  • PDF

Bone Cell Response to Neurotransmitters and Mechanical Loading (신경전달물질 및 물리적 자극에 대한 뼈 세포의 반응)

  • Kwag, J.H.;Kim, B.G.;Kim, K.H.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.89-93
    • /
    • 2009
  • Bone remodeling is a continuous process of skeletal renewal during which bone formation is tightly coupled to bone resorption. Mechanical loading is an important regulator of bone formation and resorption. In recent studies, neurotransmitters such as vasoactive intestinal peptide (VIP) were found to be present inside bone tissue and have been suggested to potentially regulate bone remodeling. In this study, our objective was to use a pre-established in vitro oscillatory fluid flow-induced shear stress mechanical loading system to quantify the effect of VIP on bone resorptive activity and investigate its combined effect with mechanical loading. VIP decreased osteoclastogenesis significantly decreased RANKL/OPG mRNA ration by approximately 90%. Combined VIP and mechanical loading further decreased RANKL/OPG ratio to approximately 95%. These results suggest that VIP present in bone tissue may synergistically act with mechanical loading to regulate bone remodeling via suppression of bone resorptive activities.

Validation of HART II Structural Dynamics Predictions Based on Prescribed Airloads

  • Sa, Jeong-H.;You, Young-H.;Park, Jae-S.;Park, Soo-H.;Jung, Sung-N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • In this study, the accuracy of CSD (Comprehensive Structural Dynamics) analysis on the evaluation of blade aeroelastic responses and structural loads of HART(Higher harmonic Aeroacoustic Rotor Test) II baseline rotor is assessed using a comprehensive rotorcraft dynamics code, CAMRAD II, and a nonlinear flexible multi-body dynamics analysis code, DYMORE. Considering insufficient measurement data for HART II rotor, prescribed airloads computed by a three-dimensional compressible flow solver KFLOW are used to replace the lifting-line airloads and thereby enhance the prediction capability of the comprehensive analyses. The CSD results on blade elastic deflections using the prescribed airloads indicate more oscillatory behavior than those by lifting-line based approaches, but the wave pattern becomes improved by including artificial damping into the rotor system. It is demonstrated that the structural load predictions are improved significantly by the prescribed airloads approach against the measured data, as compared with an isolated CSD analysis.

Numerical Analysis on Screech Tone in a Supersonic Jet (숯계산에 의한 초음속 제트의 스크리티 톤 소음 해석)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.94-100
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with a modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures and large-scale instability waves.

Numerical Study on the Motion of Azimuthal Vortices in Axisymmetric Rotating Flows

  • Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.313-324
    • /
    • 2004
  • A rich phenomenon in the dynamics of azimuthal vortices in a circular cylinder caused by the inertial oscillation is investigated numerically at high Reynolds numbers and moderate Rossby numbers. In the actual spin-up flow where both the Ekman circulation and the bottom friction effects are included, the first appearance of a seed vortex is generated by the Ekman boundary-layer on the bottom wall and the subsequent roll-up near the corner bounded by the side wall. The existence of the small vortex then rapidly propagates toward the inviscid region and induces a complicated pattern in the distribution of azimuthal vorticity, i.e. inertial oscillation. The inertial oscillation however does not deteriorate the classical Ekman-pumping model in the time scale larger than that of the oscillatory motion. Motions of single vortex and a pair of vortices are further investigated under a slip boundary-condition on the solid walls. For the case of single vortex, repeated change of the vorticity sign is observed together with typical propagation of inertial waves. For the case of a pair of vortices with a two-step profile in the initial azimuthal velocity, the vortices' movement toward the outer region is resisted by the crescent-shape vortices surrounding the pair. After touching the border between the core and outer regions, the pair vortices weaken very fast.

A Study on the Heat Transfer Characteristics of Loop Type Capillary Heat Pipe (루프형 세관 히트 파이프의 열전달특성에 관한 연구)

  • Yoon, Suck-Hun;Choi, Jae-Hyuck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.346-353
    • /
    • 2000
  • In this paper, heat transfer characteristics of a loop type capillary heat pipe were experimentally investigated for the effect of several fill charge ratios of working fluid and heat loads. This type of heat pipe consists of a heating section, a cooling section and an adiabatic section. The heat pipe used has a 0.002m internal diameter, a 0.34m length in one turn and consists of 19 turns. Heating and cooling sections each have a length of 70mm. Experiments were performed to measure the temperature distributions and the pressure variation of the heat pipe. Heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients were calculated for various operating conditions of heat pipe and it was found that heat transfer characteristics of this type heat pipe were very excellent. As shown by this experimental study, this type of heat pipe operates by oscillatory flow caused by pressure and temperature oscillations.

Characteristics of Premixed Flames in a Double Concentric Burner (이중 동축류 버너에서의 예혼합화염 특성에 관한 연구)

  • Gwon, Seong-Jun;Cha, Min-Seok;Choe, Man-Su;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1662-1669
    • /
    • 2000
  • Various flame types are observed in a double concentric burner by varying equivalence ratio and flow rates in each tube. Observed flame types include bunsen-type flame, ring-shaped flame, outer lifted flame, inner lifted flame, and oscillatory lifted flame, The doman of existence of various flames is mapped with equivalence ratio and annular jet velocity. Each flame is investigated through direct photography and OH PLIF. As central air velocity increase, the blowout region is diminished and lifted oscillating flames are observed. Inner lifted flames are observed from bunsen flames or rich shaped flames by increasing central air velocity. For inner lifted flames, annular jet velocity, at flame liftoff decreases with increasing central air jet velocity. Axial velocity profile and temperature fie이 using LDV and CRS, respectively, for a typical inner lifted flame are also measured through which the role of tribrachial flame for stabilization in emphasized.

Numerical Simulation of the Screech Phenomenon in a Supersonic Jet (수치계산에 의한 초음속 제트에서의 스크리치 현상 해석)

  • Kim, Yong-Seok;Kim, Sung-Cho;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.329-334
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures, unsteady shock motions and large-scale instability waves.

  • PDF

Lagrangian Chaos and Dispersion of Passive Particles on the Ripple Bed (해저 파문에서의 입자의 라그란지적 혼돈 및 확산)

  • 김현민;서용권
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 1993
  • The dispersion in the oscillatory flow generated by gravitational waves above the spatially periodic repples is studied. The steady parts of equations describing the orbit of the passive particle in a two dimensional field are assumed to be simply trigonometric functions. From the view point of nonlinear dynamics, the motion of the particle is chaotic under externally time-periodic perturbations which come from the wave motion. Two cases considered here are; (i) shallow water, and (ii) deep water approximation.

  • PDF