RHEOLOGIC STUDY ON THE VISCOELASTIC PROPERTIES OF FLOWABLE AND CONDENSABLE RESIN COMPOSITES

유동성 및 응축성 복합레진의 점탄성에 관한 유변학적 연구

  • Lee, In-Bog (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Cho, Byeong-Hoon (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Son, Ho-Hyun (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Kwon, Hyuk-Choon (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Um, Chung-Moon (Department of Conservative Dentistry, College of Dentistry, Seoul National University)
  • 이인복 (서울대학교 치과대학 치과보존학교실) ;
  • 조병훈 (서울대학교 치과대학 치과보존학교실) ;
  • 손호현 (서울대학교 치과대학 치과보존학교실) ;
  • 권혁춘 (서울대학교 치과대학 치과보존학교실) ;
  • 엄정문 (서울대학교 치과대학 치과보존학교실)
  • Published : 2000.09.05

Abstract

The purpose of this investigation was to observe the viscoelastic properties of five commercial flowable(Aeliteflo, Flow it, Revolution, Tetric flow, Compoglass flow), three conventional hybrid(Z-100, Z-250, P-60) and two condensable(Synergy compact, SureFil) resin composites. A dynamic oscillatory shear test was done to evaluate the storage shear modulus (G'), loss shear modulus(G"), loss tangent(tan ${\delta}$) and complex viscosity(${\eta}^*$) of the resin composites as a function of frequency - dynamic frequency sweep test from 0.01 to 100 rad/s at $25^{\circ}C$ - by using Advanced Rheometric Expansion System(ARES). To investigate the effect on the viscosity of resin composites of filler volume fraction, the filler weight % and volume % were measured by means of Archimedes' principle using a pyknometer. The results were as follows 1. The complex viscosity ${\eta}^*$ of flowable resins was lower than that of hybrid resins and significant differences were observed between brands. The complex viscosity ${\eta}^*$ of condensable resins was higher than that of hybrid resins. The order of complex viscosity ${\eta}^*$ at ${\omega}$=10 rad/s was as follows, Surefil, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it, Revolution. The relative complex viscosity of flowable resins compared to Z-100 was 0.04~0.56 but Surefil was 30.4 times higher than that of Z-100. 2. The storage shear modulus G' and the loss shear modulus G" of flowable resins were lower than those of hybrid resins but those of condensable resins were higher. The patterns of the change of loss tangent, tan ${\delta}$, of resin composites with increasing frequency were significantly different between brands. The phase angles, ${\delta}$, ranged from $30.2{\sim}78.1^{\circ}$ at ${\omega}$=10 rad/s. 3. All composite resins represent pseudoplastic nature with increasing shear rate. 4. The complex shear modulus $G^*$ and the phase angle ${\delta}$ was represented by the frequency domain phasor form, $G^*({\omega})=G^*e^{i{\delta}}=G^*{\angle}{\delta}$. The locus of frequency domain phasor plots in a complex plane was a valuable method that represent the viscoelastic properties of composite resins. 5. There was no direct linear correlationship but a weak positive relation was observed between filler volume % or weight % and the viscosity of the resin composites.

Keywords