• Title/Summary/Keyword: oscillatory

Search Result 714, Processing Time 0.021 seconds

Recognition of the Korean Alphabet using Phase Synchronization of Neural Oscillator

  • Lee, Joon-Tark;Bum, Kwon-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.93-99
    • /
    • 2004
  • Neural oscillator can be applied to oscillatory systems such as analyses of image information, voice recognition and etc. Conventional EBPA (Error back Propagation Algorithm) is not proper for oscillatory systems with the complicate input`s patterns because of its tedious training procedures and sluggish convergence problems. However, these problems can be easily solved by using a synchrony characteristic of neural oscillator with PLL(Phase Locked Loop) function and by using a simple Hebbian learning rule. Therefore, in this paper, a technique for Recognition of the Korean Alphabet using Phase Synchronized Neural Oscillator was introduced.

Design and Characteristic Analysis of Moving Magnet Type Linear Oscillatory Actuator with Spring Damper (스프링 댐퍼를 이용한 가동 자석형 리니어 진동 엑추에이터의 설계 및 특성해석)

  • 조성호;김덕현;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • This Paper deals with the design of Moving Magnet type Linear Oscillatory Actuator(MM-LOA) using spring damper based on the design procedure and the characteristic analysis. MM-LOA is applied to variable load such as vaccum pump and compressor, The structure of piston type is selected to reduce a noise. MM-LOA has over-displacement in starting state because of the low inertia of mover To improve the starting characteristic, spring damper is used. The optimum spring constant of spring damper is detected and in consideration of spring damper, MM-LOA redesigned. The parameter is calculated by Finite Element Method(FEM). For the dynamic characteristic analysis, time differential method composed of voltage and kinetic equation is used. The propriety of the improved model is verified through the experimental results.

A Variable PID Controller for Robots using Evolution Strategy and Neural Network (Evolution Strategy와 신경회로망에 의한 로봇의 가변PID 제어기)

  • Choi, Sang-Gu;Kim, Hyun-Sik;Park, Jin-Hyun;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1014-1021
    • /
    • 1999
  • PID controllers with constant gains have been widely used in various control systems. But it is difficult to have uniformly good control performance in all operating conditions. In this paper, we propose a variable PID controller for robot manipulators. We divide total workspace of manipulators into several subspaces. PID controllers in each subspace are optimized using evolution strategy which is a kind of global search algorithm. In real operation, the desired trajectories may cross several subspaces and we select the corresponding gains in each subspace. The gains may have large difference on the boundary of subspaces, which may cause oscillatory motion. So we use artificial neural network to have continuous smooth gain curves to reduce the oscillatory motion. From the experimental results, although the proposed variable PID controller for robots should pay for some computational burden, we have found that the controller is more superior to the conventional constant gain PID controller.

  • PDF

The Improvement of Efficiency Performance for Moving Magnet Type Linear Actuator Using the Neural Network and Finite Element Method (신경회로망과 FEM을 이용한 가동 영구자석형 리니어 엑츄에이터의 성능 향상에 관한 연구)

  • 조성호;김덕현;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.63-68
    • /
    • 2004
  • This paper presents an approach to optimum design of Moving Magnet Type Linear Oscillatory Actuator(MM-LOA). The Finite Element Method is applied to characteristic parameters for characteristic analysis and in order to reduce modeling time and efforts, the moving model node technique is used. In addition the neural network is used to reduce computational time of analysis according to changing design variable. To confirm the validity of this study, optimum design results are compared with results of analysis procedure that is verified by experiment.

Design and Analysis of Tubular Type Linear Oscillatory Actuator with Axially Magnetized Permanent magnet (축방향으로 자화된 영구자셕 가동자를 갖는 Tubular형 직선 왕복 액추에이터의 전자기적 특성해석 및 설계)

  • Jang, Seok-Myeong;Seo, Jung-Chul;Choi, Jang-Young;You, Dea-Joon;Cho, Han-Wook;Jang, Won-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1017-1019
    • /
    • 2005
  • This paper deals with tubular type linear oscillatory actuator with axially magnetized permanent magnet. The magnetic field distribution is predicted using a two-dimensional analytical solution derived in terms of magnetic vector potential and cylindrical coordinate system. Using this result, trust and flux linkage and back emf are derived. The results of predictions from the analysis are compared with corresponding finite element method.

  • PDF

Measurement of Zero Dispersion Wavelength in an Optical Fiber Using the Oscillatory Behavior of Four-Wave Mixing Efficiency

  • Kim, Dong-Hwan;Kim, Sang-Hyuck;Jo, Jae-Cheol;Choi, Sang-Sam
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2001
  • Non-destructive measurement of zero-dispersion wavelength variation in a dispersion shifted fiber by four-wave mixing technique is carried out. The oscillatory behavior of the four-wave mixing efficiency is utilized for the measurement of the linear dispersion slope and zero-dispersion wavelength. A simple formula useful for engineering estimation of the characteristics of fiber four-wave mixing efficiency is presented.

The Time Correlation Functions of Concentration Fluctuations in the Lotka Model near the Oscillatory Marginal Steady State

  • Kim Cheol-Ju;Lee Dong Jae;Ko Seuk Beum;Shin Kook Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.36-40
    • /
    • 1988
  • The time correlation functions of concentration fluctuations due to the random forces near the steady state are evaluated for a general two-component nonlinear chemical system by solving the corresponding two dimensional Fokker-Planck equation. The approximate method of solving the Fokker-Planck equation is based on the eigenfunction expansion and the corresponding eigenvalues for both the linear and nonlinear Fokker-Planck operators are obtained near the steady state. The general results are applied to the Lotka model near the oscillatory marginal steady state and the comparison is made between linear and nonlinear cases.

The Variation of Oscillatory Behaviours in the Oscillating Reaction system of $CHD/BrO_3-/Ce^{4+}/H^+$

  • 장영준;신수범;조상준;허도성
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.743-746
    • /
    • 1998
  • The Belousov-Zhabotinskii (BZ) reaction, which is composed of a bromate-organic acid-metal catalyst and an acidic solution is a commonly employed chemical oscillating reaction system. Cyclohexanedione (CHD) has been used as an initial organic substrate in oscillation systems. We studied each system of 1,4-CHD/BrO3-/Ce4/H+ and 1,3-CHD/BrO3-/Ce4+/H+ oscillating reactions, and studied the control of oscillating characters in a CHD/BrO3-/Ce4+/H+ batch system using a mixed substrate of 1,4-CHD and 1,3-CHD under a fixed total CHD concentration. In the mixed reactions, 1,4-CHD was used as a main substrate and small amounts of 1,3-CHD were used in order to vary the oscillatory behaviours by changing the mixing amount ratio of two substrates.

Flow Dynamics in a Supersonic Diffuser at Minimum Starting Condition to Simulate Rocket's High Altitude Test on the Ground

  • Yeom, Hyo-Won;Yoon, Sang-Kyu;Sung, Hong-Gye;Kim, Yong-Wook;Oh, Seung-Hyup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.442-447
    • /
    • 2008
  • A numerical analysis has been conducted to investigate and characterize the unsteadiness of flow structure and oscillatory vacuum pressure inside of a supersonic diffuser equipped to simulate the high-altitude rocket test on the ground. A physical model of concern includes a rocket motor, a vacuum chamber, and a diffuser, which have axisymmetric configurations, using nitrogen gas as a driving fluid. Emphasis is placed on investigating physical phenomena of very complex and oscillatory flow evolutions in the diffuser operating at very close to the starting condition, i.e. minimum starting condition, which is one of major important parameters in diffuser design points of view.

  • PDF

Derivation and Numerical Verification of Harmonic Oscillatory Description of Ferromagnetic Vortex Motion (강자기 소용돌이의 단조화 운동 유도 및 수치 검증)

  • Kim, Jun-Yeon;Choe, Sug-Bong
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.127-130
    • /
    • 2008
  • We report a theoretical description of ferromagnetic vortex motion in sub-micrometer size magnetic thin film. Based on Thiele's equation combined with later theoretical achievements, we derive the analytic description of dynamics of ferromagnetic vortex core as a damped harmonic oscillatory motion. Consequently, the relations about frequency and damping constant in damped harmonic oscillation are presented. The validity of the results is verified through micromagnetic simulation.