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Recognition of the Korean Alphabet using Phase Synchronization of
Neural Oscillator
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Abstract
Neural oscillator can be applied to oscillatory systems such as analyses of image information, voice recognition and
etc. Conventional EBPA (Error back Propagation Algorithm) is not proper for oscillatory systems with the complicate
input’s patterns because of its tedious training procedures and sluggish convergence problems. However, these
problems can be easily solved by using a synchrony characteristic of neural oscillator with PLL{Phase Locked Loop)
function and by using a simple Hebbian learning rule. Therefore, in this paper, a technique for Recognition of the
Korean Alphabet using Phase Synchronized Neural Oscillator was introduced.
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1. INTRODUCTION

Oscillatory systems are ubiquitous in nature and also,
principally, in
dynamics including interaction of human cardiovascular
and respiratory systems. processing
mechanism of neurons in brain is based on its rhythmic
activity and synchronization phenomena of neuronal
spiking. However, many neural network researches are
still focusing only on the non-oscillatory sigmoidal
neuron activities. Futhermore, the precise timing
manipulation of neuronal firing and its control strategy
usually had been neglected(1,2,3].

Therefore, it is necessary to understand the
information processing mechanisms of oscillatory
neurons in brain, specially a synchrony of coupled neural

neuron and neuro-physiological

Information

oscillators should be studied with estimation of certain
relations between their phases, frequencies, and periodic
activity[3]. synchrony dynamics in
oscillation can be modeled as a neural oscillator in Fig. 1

Such neural

and has a similar function as PLL models. It is assumed
that an oscillatory neural network has the same
neuro-computational properties as the standard Hopfield
network. Ermentrout, Pascal, and Gutkin have recently
researched using the reduced-phase method that when
an interacting pair of neurons, one excitatory and one
inhibitory, are coupled to other excitatory-inhibitory
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pairs through the excitatory neurons as shown in Fig. 1,
synchronous or near-synchronous solutions are stable
throughout a wider range of firing rates compared to
networks involving only excitation. In other words,
adding local inhibitory Interactions to networks
dominated by excitation can enhance synchronization.

The synchronization in networks of coupled
excitatory—inhibitory pairs (so called, type I neurons)
depends on firing rate in the same way that
synchronization in all-excitatory networks does: The
synchronous or nearsynchronous solution is stable at
lower firing rates and breaks down gradually as firing
rate increases. The inclusion of inhibition leads
synchrony or near—synchrony to break down at higher
and higher rates, extending the range of firing rates over
which interactions promote synchrony. Frank C.
Hoppensteadt and Eugene M. Izhikevich proposed the
architecture of an oscillatory neural network that can be
built using off-the-shelf PLL’s, e.g., LMC568 or LM565
series by National Semiconductor. Their networks were
memorizable and reproducible complex oscillatory
patterns in which all neurons oscillate with the same
frequency but different phase relations. There are still
unsolvable issues such as learning rule and tedious
phase locking time of oscillatory network to the
memorized patterns{1].

In this paper, the recognition system of the Korean
Alphabet using phase model synchronization of neural
oscillator shall be implemented by improvement of
Hebbian learning rule and neural oscillator model. We
can postulate an extreme assumption that each neuron
exhibits periodic sinusoidal oscillation. And also,
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comparing to the results of Frank C. Hoppensteadt and
Eugene M. Izhikevich[1], its pattern recognition time by
phase synchrony of neural oscillators with an
acceleration factor shall be substantially shortened and
also its recognition appearance shall be clarify by using

a linear threshold function.

Neuron i Neuron j

l I l
Fig. 1. Architecture Structure of Neural Oscillator with

the interaction of Coupled Excitatory (E) and Inhibitory (I)
neuron pairs

2. PHASE MODEL OF NEURAL
OSCILLATOR

2.1 Neural Oscillator as PLL

We can implement an neural oscillator as PLL in Fig. 2.

If a stable and sinusoidal oscillation is assumed, a phase
synchronizer of neural oscillator stands for
'Phase-Locked Loop’ and is basically a closed loop
frequency control system, which functioning is based on
the phase sensitive detection of phase difference
between the input and output signals of the controlled
oscillator. The phase detector is a device that compares
two input frequencies; f,N and fFD, generating an
output frequency f,; that is a measure of their phase
difference. If, for example, they differ in frequency, it
gives a periodic output at the difference frequency.
Therefore, a neural oscillator is similar to a PLL.

Jiv
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Fig. 2 Basic Architecture of PLL
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2.2 Canonical Model of Weakly Connected Neurons

1) Basic Neural Oscillator [4]

Basically, the stable periodic self-sustained
oscillations are described by a stable limit cycle in the
dynamics about phase ¢ from the relation 6()=wr+ ()
as

do
av _ 1
=@ (1D
where w,=2x/T for the period T of the oscillator. If
two oscillators are weakly connected, the phase
dynamics can be given as

9, 0, +6£6,6)) (2)
dt

where ¢ is the coupling coefficient and the functions
f [i=121 depict the coupling relation with 2z [rad]
period. If each of the intervals corresponds to a
n:m synchronization region, for some integer » and m,
the frequencies @[i=1,2] in resonance are represented
as

ne, = mew, (3)

Therefore, the phase difference obtained from the
Fourier expansion of the £ [i=1,2]is as

@, (1) =1, (£) = mp, (1) (4
and its dynamic equation is a first order ordinary
differential equation as

%”w] (1) —mo, (1) + &V (B, (1),8, (1)) (5

This equation has two type solutions of fixed points and
periodic relations of ¢ (1) . The first corresponds to

o

perfect phase synchrony ¢, (r) =const. And the last
means a quasiperiodic motion with unequal frequencies
oli=1,2] . But in general, the nonresonant terms are

existing in neural oscillation modes as

| np,(1)=me,(1)=8 | <const (6)

where § is infinitesimal and represents an average
amplitude of the oscillating phase perturbation.
Therefore, the phase difference is oscillating with the
amplitude 6 and is disappeared for very weakly
connected oscillators. As above mentioned, in order to
obtain an equation describing the oscillatory phase
dynamics, the variations of their amplitudes were
neglected.

2) Weakly Coupled Neural Oscillator
If the N neural oscillators are coupled each other, the
phase dynamics are given as
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(pr=1:;(t’¢l'(p2’¢3"'v(p/v) (7)

And the function £ with the assumption of 2z period
encapsulate both the internal dynamics of the i —th
neural oscillator and its coupling to the other oscillator.
Because the influence of all the oscillator is the sum of
terms each one of which represents the influence of one
of the other oscillators, for the weakly connected
neurons, we can rearrange eq.(1) by using the synaptic
connection weight s, describing the influence of
oscillator j on oscillator i. The assumption of weakly
connected neuron is based on the fact that the averaged
size of a postsynaptic potential is less than 1[mV],
which is small in comparison with the mean size
necessary to discharge a cell (around 20[mV]) or the
averaged size of the action potential (around 100{mv ).
Resultantly, if a weakly neuronal connections are
assumed and we consider the connection weights s,
and the acceleration convergence factor 7, , its
mathematical model can be described as following.

. N
0. =w, +1,.5,Y6,.6,.6,)
=t
or (8)
0, =0 +0,

And also, if the input v(9,) is applied to the voltage
controlled oscillator embedded in the i -th PLL of fig. 2,
the VCO output signals are phase shifted by a delay
angle of —x/2 [rad].

Therefore, eq. (7) is rewritten as

0. =w,+1, Y s,VOIV, —%) (9)
f=1

Where, when the 6.()=wt+e,(t) is given, the phase
deviations defined as vector @) =[g,(s),9,().,p, ()] are
converge to the phase equilibrium points @ . The proof
for their convergences is succinctly described in Ref.
11]. In case of the pattern recognition problems, the
phase equilibrium points can be dependent on the
number of modes to be represented in order to
recognize the pattern images. That is, in the color image
modes, it needs many equilibrium points, but in the black
and white ones, it needs only two equilibrium points.

3. Generation of Pattern Vectors and lIts
Recognition Technigue

The real vector arrays for the p patterns with the
dimension of each 10x7 to be memorized as ‘7F, ‘“} and
‘¥ were mapped as Fig.3 and their vectors are given
as.

)_"'=[/'l.|k,l,k,-",)-k],}~,~k=il’k=1’2’m’p (10)

where the real number Af = ﬂ,’j‘. means that the /—th and
the j~th oscillators are in-phase; ¢, =¢,+27 [rad], and
Al =—A’; means they are anti-phase; ¢,=g¢,+r [radl.
Af=-1 means the black color and 4*=1 means for the
white color. And their values restricted between -1 and
1 shall be depicted as the gray color. Fig. 3(a) shows the
three image Patterns of “Jf, “LF and “Lf to be
memorized.

+
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(b) Noisy Pattern of ‘7F to be Recognized
Fig. 3. Schematic Diagram for Patterns

We use the learning rule to train the network with
three images “7f’, “Lf, and “£f depicted in Fig. 4. A
Hebbian Learning Rule with a
accelerator factor 1<n,<3.2 and the regulation factor
a, is proposed as following.

simple learning

5, == Y o A (11)
N k=y

If the value of «, is not set within the above boundary,
the periodic oscillation is disappeared or the phase
synchronization is never obtained. And, the success for
recognition is strongly assured when the «, is given
only for the noisy pattern to be recognized. When the
initial phase distribution corresponds to a distorted
image “J#°, the neural oscillators lock to each other with
an appropriate phase relation ; in—phase or anti-phase.
That is referred to recall an associative memory for the
stored patterns.
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4. Recognition Results of Pattern using 4 and ¢,
Phase Synchronization ;

When the v(@6,)=sing, is assumed, the simulations
were divided into the four steps; those are, application of
the conventional techniquel[l], application of the
regulation factore, and applications of the convergence
accelerator factor n, and the linear threshold function

phi(rad/sec)

for post-processing.

" At the first step, as the method of Ref .1, three pattern
vectors were memorized and all the factors o, and 7, :
were set as 1. Two outputs v, ) and V(8,), their 055 i L
phase deviations ¢, and @, , and ¢[i=12,-N] were time(sec)
shown in Fig. 4. Comparing to the results of Ref.1, the (©) ¢, and o,
synchronization time was substantially reduced but the
phases were not converged into the fixed points as Fig.
4(d). The phases were approximately synchronized into
the four values as ¢,[[=1,23,4] . If we consider the
periodic duration of 2z [radl, we can conclude to be
A =-1 for ©, =@, x2x[rad] and A =1 for
9. =9, t2x(rad] . Therefore, all the recognition results
were not successful. Fig. 4 shows that the noisy “7}’
is falsely recognized as “t}”’ .

At the second step, when only one pattern was
memorized, the recognition was successful. See Fig. 5.
However, the long convergence time and the phase
synchronization characteristics were very similar to the

phi(rad/sec)

time(sec)

results of Ref. 1. (d) Convergence Patterns of Phases

Fig. 4. Application Results of Conventional Technique
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Fig. 5. Application Results of Regulation of Factor ¢,
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(d) Convergence Patterns of Phases
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(d) Convergence Patterns of Phases
Fig. 6. Application Results of Regulation Factor «,
and Accelerator Factor 7,

At the third step, Fig. 6 shows the successful
recognition results for the noisy “7F when the factors
are given as n,=5,¢,=La,=a,=0. But, we can observe
that the output waveforms of v@,) and v(@,) do not
sustain sinusoidal oscillations with the lower frequencies
4.36[rad/sec] than the frequency
o, =5 [rad/sec]. At the same time, the amplitudes of the
phases oscillating with the synchronized limit cycle
modes are somewhat increased.

applied
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At the 4th step, Fig. 8 shows also the successful
recognition results as Fig. 6 when the factors are given
as 1,=99,¢ =5a,=a,=0 . In this case, because the
resultant recognition values are reversed and have the
unclean images, they must be post-processed through
the threshold filter as Fig. 7.

A
N 4

o
=

4
Fig . 7 Linear Threshold Function

This threshold filter has a function to clarify the
recognized gray patterns for below v(,)=-0.2 and over
V(6,)=02.

1 for a<V(@,)
V(0,)={V(®,) for-a<V()<a (12)
-1 for —a>V(@)

1X:] 1 15 2 25 3 35 4 45 5
time(sec)

(a) Waveforms of v(,) and v(,)

4.18[sec]
(b) Output Patterns of Image

4.18[sec]
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(d) Convergence Patterns of Phases
Fig. 8. Application Results of Linear Threshold
Function

However, in the biological system, the memorized
associative patterns are not stationary, but dynamic and
oscillatory in which neurons fire periodically in phase
with nonlinear relations between their phases and
frequencies. For example, the human cardiovascular and
respiratory system do not acts independently and are
comparatively weak coupling by an unknown form of
cardio—respiratory interaction through synchronization
during paced respiration. Therefore, the stable
oscillation and the phase synchronization are necessary.

5. CONCLUSION

In this paper, it shows that the proposed elementary
recognition technique of the Korean alphabet using
Phase Synchronization of Neural Oscillator was more
successful than the conventional theories [1,2].
Specially, we could get more a superiority of neural
oscillator with a simple Hebbian learning rule to a
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generalized neural network with EPBA. But there are
still some issues about the convergence time and the
stability including the sustainable stable oscillation.

In the future, the neural oscillator shall be widely
applied to the nonlinear oscillatory systems such as
analysis of image information, voice recognition and etc.
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