• Title/Summary/Keyword: orthotropic plates

Search Result 193, Processing Time 0.025 seconds

Study on the Analysis of Orthotropic Thin Plates and Orthotropic Thick Plates (직교이방성 박판 및 후판의 해석연구)

  • 박원태;최재진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.2
    • /
    • pp.76-80
    • /
    • 2003
  • In this study, it is presented analysis results of bending problems in the orthotropic thick plates and the orthotropic thin plates. Finite element method in this analysis was used. Both Kirchoffs assumptions and Mindlin assumptions are used as the basic governing equations of bending problems in the orthotropic plates. The analysis results are compared between the orthotropic thick plates and the orthotropic thin plates for the variations of thickness-width ratios.

  • PDF

The Modified Method of Orthotropic Rigidities for Stiffened Plates with Open Ribs (개단면 리브를 갖는 보강판에 대한 직교이방성 강성의 보정 방법)

  • Chu, Seok Beom;Choi, Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.191-200
    • /
    • 2004
  • In this paper, the modified method of orthotropic rigidities for stiffened plates with open ribs is proposed to solve the problem of the inaccurate results of the orthotropic plate analysis according to the dimensions of stiffened plates. In analyzing various types of stiffened plates with open ribs using the isotropic and orthotropic plate element, orthotropic plates are found to gave smaller maximum displacements compared to isotropic plates in a range that is smaller than the special rigidity ratio and reversely. Therefore, obtaining a more accurate solution of the orthotropic plate analysis requires modifying the orthotropic rigidities of stiffened plates according to the rigidity ratio. This study presents two modified methods using the displacement function and the displacement ratio. The application of the two methods improves the accuracy of the results of the orthotropic plate analysis, although the modified method using the displacement ratio is better than the method using the displacement function in terms of serviceability and safety. The comparison with the experimental example shows that the proposed modified method improves accuracy. Therefore, the orthotropic plate analysis of stiffened plates with open ribs can achieve more accurate results using the proposed method in this study.

Vibration Power Flow Analysis of Coupled Co-planar Orthotropic Plates (동일 평면상에서 연성된 직교이방성 평판의 진동파워흐름해석)

  • Song, Jee-Hun;Park, Do-Hyun;Hong, Suk-Yoon;Kil, Hyun-Gwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.856-862
    • /
    • 2010
  • In this paper, the power flow analysis(PFA) method was developed to predict the vibrational responses of coupled co-planar orthotropic plates in frequencies ranging from medium to high. To cover the power transmission and reflection at the joint of the orthotropic plates, the wave transmission approach is applied with the assumption that all the incident waves are normal to the joint. Through numerical analyses, the power flow energy density and intensity fields of coupled co-planar orthotropic plates were compared with those of classical modal solutions by changing the frequency and internal loss factor, and they show good agreement in terms of the global decay and the attenuation patterns of the energy density.

Rayleigh-Ritz optimal design of orthotropic plates for buckling

  • Levy, Robert
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.541-552
    • /
    • 1996
  • This paper is concerned with the structural optimization problem of maximizing the compressive buckling load of orthotropic rectangular plates for a given volume of material. The optimality condition is first derived via variational calculus. It states that the thickness distribution is proportional to the strain energy density contrary to popular claims of constant strain energy density at the optimum. An engineers physical meaning of the optimality condition would be to make the average strain energy density with respect to the depth a constant. A double cosine thickness varying plate and a double sine thickness varying plate are then fine tuned in a one parameter optimization using the Rayleigh-Ritz method of analysis. Results for simply supported square plates indicate an increase of 89% in capacity for an orthotropic plate having 100% of its fibers in $0^{\circ}$ direction.

Free Vibrations of Orthotropic Plates with Variable Thickness (가변 두께를 갖는 직교이방성 평행사변형판의 자유진동 해석)

  • Heo, Cheol-Weon;Moon, Duk-Hong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.49-57
    • /
    • 1986
  • The vibrations problem of thin orthotropic skew plates of linearly varying thickness is analyzed using the small deflection theory of plates. Using dimensionless oblique coordinates, the deflection surface can be expressed as a polyonmial series satisfying the boundary conditions. For orthotropic plates which is clamped on all the four edges, numerical results for the first two natural frequencies are presented for various combinations of aspect ratio, skew angle and taper parameter. The properties of material used are one directional glass fibre reinforced plastic GFRP. The results obtained may be summarised as follows: 1. In case of the first mode vibration of plates with increase in the skew angle, the natural frequencies of plates decrease. 2. As the aspect ratio decrease, the natural frequencies of plates decrease. 3. For the identical skew angle, natural frequencies of plates increase with the taper parameter of thickness.

  • PDF

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

Three-Dimensional Free Vibration Analysis of Orthotropic Plates (직교이방성판의 3차원 자유진동 해석에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • This paper presents the three-dimensional stress analysis of orthotropic thick plates using the three-dimensional spline strip method based on the theory of elasticity. The orthotropic plates are made of Aragonite crystal and sitka spruce. To demonstrate the convergence and accuracy of the present method, several examples are solved, and results are compared with those obtained by other exact and numerical methods based on the theory of elasticity. Good convergence and accuracy are obtained. The effects of thickness/width ratio, aspect ratio and boundary conditions on normal stress distributions of Aragonite crystal plates and sitka spruce plates are investigated. Moreover, the difference of weak orthotropic and strong orthotropic properties given to the characteristics of stress distributions are also shown.

An Analysis of the Orthotropic Curved Circular Ring Sector Plates (곡선경계를 갖는 철근 콘크리트 이방성 선형판의 해석)

  • 노홍민;조진구
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.258-264
    • /
    • 1999
  • In this study, a computer program was developed for analysis of the orthotropic curved ring sector plates. In the developing program , the thin-plate theory and multi-base coordinate system was adopted. The effect of design factors-boundary conditions, loading conditions, steel ratio, open angle, radius of curvature and relative flexural rigidity between slab and edge-beam-on the behavior of the circular ring sector plates were discussed. Also, the practical limitations was proposed to replace the problem of the orthotropic sector plate by equivalent rectangular plage.

  • PDF

Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory

  • Ferruh Turan
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.145-161
    • /
    • 2023
  • This study investigates the influences of porosity on the stability of the orthotropic laminated plates under uniaxial and biaxial loadings based on the hyperbolic shear deformation theory. Three different porosity distribution are considered with three specific functions through the plate thickness. The stability equations of porous orthotropic laminated plates are derived by the virtual work principle. Applying the Galerkin method to partial differential equations, the critical buckling load relation of porous orthotropic laminated plates is obtained. After validating the accuracy of the proposed formulation in accordance with the available literature, a parametric analysis is performed to observe the sensitivity of the critical buckling load to shear deformation, porosity, orthotropy, loading factor, and different geometric properties.

Characteristics of Sound Insulation in Sandwich Plates with Orthotropic Skin Plate (이방성판을 사용한 샌드위치판의 차음특성)

  • Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Jae-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.853-856
    • /
    • 2004
  • This study presents a prediction method for sound insulation of sandwich plate which consists of orthotropic plates as skin and mineral wool as core. Prediction by classic theory, which considers orthotropic effects, requires considerably complex and cumbersome process and moreover many assumption. However, experimental results of the sandwich plate with orthotropic plates as skin show that the orthotropic effects are disappeared or fade out. Hence, predictions by using sandwich model are conducted by a simple modelling that substitutes an orthotropic plate into an equivalent flat plate. Comparative results show that sandwich model gives a good agreements with theoretical prediction.

  • PDF