• Title/Summary/Keyword: orthogonal anisotropy

Search Result 18, Processing Time 0.024 seconds

The Quantitative Diffusion-Tensor Anisotropy of Human Brain Using Fast STEAM DTI

  • 박현정;황문정;김용선;이상권;장용민
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.165-165
    • /
    • 2001
  • Purpose: To obtain quantitative diffusion-tensor anisotropy information of human cerebral structu using turbo STEAM diffusion-tensor imaging. Method: Quantitative diffusion anisotropy MR images were obtained in 7 healthy adults using turbo STEAM sequence and a combination of tetrahedral and orthogonal diffusi gradients. Both relative anisotropy(RA) and fractional anisotropy(FA) values were measured various brain regions. The anisotropy index was then compared with the reported valu resulting from EPI-based diffusion tensor imaging.

  • PDF

The Quantitative Diffusion-Tensor Anisotropy of Human Brain Using Fast STEAM DTI

  • 박현정;황문정;김용선;이상권;장용민
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.138-138
    • /
    • 2001
  • Purpose: To obtain quantitative diffusion-tensor anisotropy information of human cerebral structu using turbo STEAM diffusion-tensor imaging. Method: Quantitative diffusion anisotropy MR images were obtained in 7 healthy adults using turbo STEAM sequence and a combination of tetrahedral and orthogonal diffusi gradients. Both relative anisotropy(RA) and fractional anisotropy(FA) values were measured various brain regions. The anisotropy index was then compared with the reported valu resulting from EPI-based diffusion tensor imaging.

  • PDF

Analysis on the Effect of Material and Forming Conditions on the Cup Earing by Taguchi Method (실험계획법을 이용한 컵 귀발생의 영향인자 해석)

  • 정기조
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.30.1-33
    • /
    • 1999
  • Finite element simulation with experimental analysis of Taguchi's orthogonal array was carried out to know the effects of material and forming parameters on the cup earing and skewness. It was revealed that the planar anisotropy was the most influencing factor in the cup ear formation whereas blank holding force and material properties such as strength and thickness deviation at the coil edge had a relatively high effect on the cup skewness.

  • PDF

Quantitative parameters of primary roughness for describing the morphology of surface discontinuities at various scales

  • Belem, Tikou
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.515-530
    • /
    • 2016
  • In this paper, five different quantitative parameters were proposed for the characterization of the primary roughness which is the component of surface morphology that prevails during large strike-slip faults of more than 50 m. These parameters are mostly the anisotropic properties of rock surface morphology at various scales: (i) coefficient ($k_a$) and degree (${\delta}_a$) of apparent structural anisotropy of surface; (ii) coefficient ($k_r$) and degree (${\delta}_r$) of real structural anisotropy of surface; (iii) surface anisotropy function P(${\varphi}$); and (iv) degree of surface waviness ($W_s$). The coefficient and degree of apparent structural anisotropy allow qualifying the anisotropy/isotropy of a discontinuity according to a classification into four classes: anisotropic, moderately anisotropic/isotropic and isotropic. The coefficient and degree of real structural anisotropy of surface captures directly the actual surface anisotropy using geostatistical method. The anisotropy function predicts directional geometric properties of a surface of discontinuity from measurements in two orthogonal directions. These predicted data may subsequently be used to highlight the anisotropy/isotropy of the surface (radar plot). The degree of surface waviness allows qualifying the undulation of anisotropic surfaces. The proposed quantitative parameters allows their application at both lab and field scales.

Sensitivity Analysis of Material and Process Variables Affecting on the Stamping Formability (재료변수와 공정변수가 스템핑 성형성에 미치는 영향 연구)

  • Kim, Youngsuk;Park, KeeChul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2246-2256
    • /
    • 1996
  • To investigate the effect of material and precess variables on stamping formability of sheet materials, simulations for the cup drawing and the Yoshida buckling test were carried out using ABAQUS, commercial nonlinear finite element analysis code. The various factor effects on stamping formability of sheet materials were analyzed by the designed process according to Taguch's orthogonal array experiment. Cup drawing simulation showed that local neckling was very sensitive to plastic anisotropy parameter of sheet material and friction coefficient between sheet and tool interface. Simulations for the Yoshida buckling test have clarified that buckling behaviour of sheet material was mostly susceptible to yield stress and sheet thickness mostly. However, plastic anisotropy parameter and strain hardening coefficient affect moderately buckling behaviour of steel sheets after the buckling initiation.

Influence of Anisotropy of Microcrack Distribution in Pocheon Granite Rock on Elastic Resonance Characteristics (포천 화강암의 미세균열 분포 이방성이 탄성파 공진특성에 미치는 영향)

  • Kang, Tae-Ho;Kim, Kwang Yeom;Park, Deok-Won;Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.363-372
    • /
    • 2014
  • Granite rock is reported to have three orthogonal anistoropic planes i.e., rift, grain induced by microcrack characteristics and mineral arrangement. We investigated the influence of thus fabric anisotropy in granite on elastic wave properties using free-free resonance test to obtain unconstrained compression wave velocity, shear velocity, Poisson ratio and damping ratio. As a result, Rod wave velocity is more dependent on anisotropy of granite due to microcrack distribution than shear wave velocity. In addition, anisotropy of Poisson ratio and damping ratio is also observed with respect to three anisotropic planes.

Mechanical Properties Anisotropy of Plain Weave Glass Fabric Reinforced Epoxy Resin Laminates (평직유리섬유강화 에폭시 적층판의 기계적 특성 이방성)

  • Kim, Yon-Jig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • The anisotropic mechanical properties were measured for the three orthogonal orientations of plain weave glass fabric reinforced epoxy resin laminate. In tensile and flexural tests, axial and edge type specimens failed by pull-out of warp and fill yarns, respectively. In contrast, the thickness type specimens failed by adhesive failure process. Longitudinal cracking occurred in several of the edge type specimens during tensile test. That cracking caused pop-in in the stress-strain curve. Defects induced by improper coupon machining caused that cracking.

Anisotropic absorption of CdSe/ZnS quantum rods embedded in polymer film

  • Mukhina, Maria V.;Maslov, Vladimir G.;Baranov, Alexander V.;Artemyev, Mikhail V.;Fedorov, Anatoly V.
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.153-158
    • /
    • 2013
  • An approach to achieving of spatially homogeneous, ordered ensemble of semiconductor quantum rods in polymer film of polyvinyl butyral is reported. The CdSe/ZnS quantum rods are embedded to the polymer film. Obtained film is stretched up to four times to its initial length. A concentration of quantum rods in the samples is around $2{\times}10^{-5}$ M. The absorption spectra, obtained in the light with orthogonal polarization, confirm the occurrence of spatial ordering in a quantum rod ensemble. Anisotropy of the optical properties in the ordered quantum rod ensemble is examined. The presented method can be used as a low-cost solution for preparing the nanostructured materials with anisotropic properties and high concentration of nanocrystals.

Evaluation of Machining Characteristics of the Carbon Fiber Reinforced Plastic (CFRP) Composite by the Orthogonal Cutting (직교 절삭 기반 탄소섬유복합재 가공특성 관련 연구)

  • Kim, Yeong Bin;Kim, Min Ji;Park, Hyung Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.439-445
    • /
    • 2016
  • Carbon fiber reinforced plastic (CFRP) composites have been widely used due to their great strength, stiffness and light weight. However, due to its anisotropy and inhomogeneous properties the machining process of CFRP composites is typically more complex than that of regular metals. Since there are many defects, such as delamination and tool wear during the machining process of CFRP composites, the optimization of this process is essential in improving the productivity. In this study, orthogonal machining of CFRP composites was performed to identify the machining characteristics of these materials. In addition, an experimental observation of delamination was investigated through the use of scanning electron microscopy (SEM). In these experiments, the cutting forces were measured and analyzed to determine the difference between machining of CFRP composites and metals. The comparison between the numerical models and experimental results was performed in terms of the maximum cutting forces.