• Title/Summary/Keyword: orifice method

Search Result 215, Processing Time 0.02 seconds

Numerical Analysis of Gas Atomizer Flow using the Compressible Navier-Stokes Equations (압축성 Navier-Stokes 방정식을 이용한 가스 분무기 유동의 수치적 해석)

  • 윤병국
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.120-134
    • /
    • 1995
  • The behavior of the flow about gas atomizers with a supersonic nozzle containing an under-expanded or over-expanded jet is very important with respect to performance and stability characteristics. Since detailed experiments are expensive, computational fluid mechanics have been applied recently to various relating flow field. In this study, a higher order upwind method with the 3rd order MUSCL type TVD scheme is used to solve the full Reynolds Wavier-Stokes equations. To delineate the purely exhaust jet effects, the melt flow is not considered. Comparison is made with some experimental data in terms of density fields. The influence of the exhaust-jet-to freestream pressure ratio and the effect of the protrusion length of the melt orifice are studied. The present study leads us to believe that the computational fluid mechanics should be considered as powerful tool in predicting the gas atomizer flows.

  • PDF

An Analysis for Turbulent Hybrid Bearings with Fluid Inertia and Swirl Injection Effects (유체의 관성력과 스월의 영향을 고려한 난류 하이브리드 베어링의 해석)

  • 이용복;김창호;최동훈
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.85-91
    • /
    • 1996
  • An analysis for turbulent hybrid beatings with fluid inertia and swirl injection effect was derived for studying static characteristics of swirl-controlled hybrid journal. The swirl-controlled hybrid journal beating is considered to have more freedom in stability control in high speed rotating machinery. Current analysis is compared with experimental results with 3-recess hydrostatic journal bearing. The analysis revealed that the fluid momentum exchange at orifice discharge could produce pressure rise inside the recess region which can control the shear flow induced by journal rotation. The analysis also shows that the swirl-controlled hybrid journal beating has a capability of controlling load carrying capacity and stability by manipulating supply pressure and injection angle.

A Study on Development of High Flow Solenoid Valves (대유량 솔레노이드 밸브 개발에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Port size 80mm or above large-flow type solenoid valves are extensively used in dust collector and power plants. These multi-stage solenoid valve have few problem. first, multi-solenoid valves are almost depend on imports and there are weak in the brine environment and the low energy efficiency. Because these problem, increased the necessity of research on the development of large flow and high pressure type solenoid valves. In this study, describe the design method of multi-stage solenoid test bench and confirm the influence valve performance on several parameter such as diaphragm orifice diameter. At first, each part has modeled by AMESim simulation tool and combining them. This AMESim virtual multi-stage solenoid valve found influence valve performance on the valve parameter. Finally developed the multi-stage solenoid valve and verified that performance on experimental result.

Definition and Correlation for Spray Angle in Non-Reacting Diesel Fuel Sprays

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.244-250
    • /
    • 2006
  • Of the macroscopic spray characteristics of non-reacting diesel fuel sprays, the spray angle reflects directly the atomization and air entrainment processes downstream the nozzle. In addition, spray angle is important because it will be closely related to the spray penetration. The existing definitions for the measurement of spray angle as well as the correlations for the prediction of spray angle are, therefore, summarized and reviewed. The existing definition of spray angle can be classified into four groups: distance based on orifice diameter, distance based on spray tip penetration, definition based on surface wave, and definition based on atomization. It is strongly required to specify the definition and measurement method when the data for spray angle is reported. The existing correlations for spray angle can be classified into two groups: theoretical and empirical correlations. The study on the evaluation of the existing correlations fer spray angle is required.

  • PDF

The Study on the Aeroacoustic Characteristics of an Axial Fan for an Air-Conditioner (공기조화기 축류팬의 공력소음 특성 연구)

  • Lee, Soo-Young;Han, Jae-Oh;Kim, Tae-Hun;Lee, Jai-Kwon;Jeon, Wan-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.205-208
    • /
    • 2006
  • This paper proposes a new computational aeroacoustics method for an axial fan analysis. The major aeroacoustic noise source of an outdoor air-conditioner is the axial fan. It was revealed that the dominant noise source is the aerodynamic interactions between the rotating blade and stationary orifice. Many researches were focused on the fan only case. However, it does not fit to a real outdoor unit of air-conditioner. Especially, the inlet part of the axial fan of real system case is complex and not uniform. So, in order to identify the dominant noise source of axial fan, full outdoor unit analysis is important. Transient CFD analysis of full system was performed by commercial CFD code - SC/Tetra. Dominant noise source of the system was calculated by commercial CFN code - FlowNoise. The results show that not only BPF peaks but also broadband noise are similar to the measured data.

  • PDF

Analysis and Design of a Pneumatic Vibration Isolation System: Part II. Simulation, Experimental Verification and Design Optimization (공압 제진 시스템의 해석과 설계: II. 시뮬레이션, 실험과 설계 최적화)

  • Moon Jun Hee;Pahk Heui Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.137-146
    • /
    • 2004
  • This is the second of two companion papers concerned with the analysis and design of a pneumatic vibration isolation system. The properties of the system are clarified by observation of the transmissibility surface calculated by the models and algorithm developed in the first paper of this research. It Is shown that the nonlinear model proposed in this research is more closer to experimental results than the linear model that have been used in previous studies. The design optimization of the major design variables that affect the performance of the system is achieved by using the condition for attenuation, disturbance rejection and maximum damping in resonance peak. The design space search method is adopted for the optimization of the orifice area. The models, transmissibility calculation algorithms and design optimization techniques developed in this research are shown to be greatly helpful to the optimal design of the pneumatic vibration isolation system by experiment.

발전소 배관지지용 유압완충기 개발

  • Park, Tae-Jo;Koo, Chil-Hyo;Cho, Gwang-Hwan;Lee, Dong-Ryul;Lee, Hyun;Kim, Yeon-Hwan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.232-238
    • /
    • 1997
  • In this paper, a theoretical method is presented to design a hydraulic control valve system that consist of an important component in the hydraulic snubber. The hydraulic snubber is used essentially to support the piping systems at power plants. To calculate the force due to pressure drop and flow rate in the valve orifice and by-pass hole, Bernoulli equation is used. The Reynolds equation are numerically analyzed in the clearance gap between the valve cone and valve seat to estimate the friction force and leakage flow rate. Based on the detailed theoretical data, we developed successfully the hydraulic snubber for power plants.

  • PDF

Setup Procedure of Dump Valve for Full-Scale Airframe Test (전기체 구조시험의 덤프밸브 조절절차 개발;)

  • Kim, Sung-Chan;Kim, Sung-Jun;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1252-1257
    • /
    • 2003
  • This paper present a procedure of meter-out flow control method for dump valve in full-scale airframe test. Emergency stop, which results in dump state, can be happened during full-scale airframe test by several causes. Because servo valve can't control hydraulics actuator in the dump state, pressure in cylinder chamber may rise abruptly and overload can be acted to the test article. In this paper, the procedure and technology of orifice setting are investigated to protect the test article from unexpected loads by dump. The test results show that the presented methods decrease peak loads and improve unloading characteristics of hydraulic actuators in the dump state.

  • PDF

Experimental Studies on Liquid Film Thickness Measurement and the Formation of Air Core in a Swirl Injector (스월 인젝터에서 액막두께 측정과 Air Core의 구조에 관한 실험적 연구)

  • Kim, Sung-Hyuk;Kim, Dong-Jun;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.147-154
    • /
    • 2006
  • A specially designed injector using electric conductivity was used to measure the liquid film thickness accurately. The measurement conducted through the precise calibration, accuracy is demonstrated in comparison with the previous theory and the results using other measurement method. The tendency of liquid film thickness for geometric parameters was examined by the precise measurement. The variation of air core and stability are examined through the visualization of the formation of air core in swirl chamber and the variation of liquid film thickness by the time.

  • PDF

Development of Rheology Forming Technology of Wear Resistance Al-Si Materials (I);Filling Behavior and Defect Evaluation (내마모계 Al-Si 재료의 레오로지 성형기술 개발 (I);충진거동 및 결함분석)

  • Jung, Hong-Kyu;Kang, Sung-Soo;Moon, Young-Hoon;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.368-376
    • /
    • 2000
  • Rheology forming technology has been accepted as a new method for fabricating near net shaped products with lightweight aluminum alloys. The rheology forming process consists of reheating process of billet, billet handling, filling into the die cavity and solidification of rheology formed part. The rheology forming experiments are performed with two different die temperatures ($T_d$ = $200^{\circ}C$, $300^{\circ}C$) and orifice gate type. The filling behavior and various defects of Al-Si materials with wear resistance (A357, A390 and ALTHIX 86S) fabricated in rheology forming process are evaluated in terms of alloying elements and surface non-uniformity. Finally, the methods to obtain the rheology formed products with high quality are described by solutions for avoiding the surface and internal defects.

  • PDF