• Title/Summary/Keyword: organophosphorus hydrolase

Search Result 16, Processing Time 0.018 seconds

Production of Periplasmic Space-Secreted Organophosphorus Hydrolase from Recombinant Escherichia coli for Degradation of Environmental Toxic Organophosphate Compounds (환경 독성 유기인 화합물 분해를 위하여 재조합 대장균에서 세포내 간극으로 분비된 Organophosphorus Hydrolase의 생산)

  • Choi, Suk Soon;Seo, Sang Hwan;Kang, Dong Gyun;Cha, Hyung Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.3
    • /
    • pp.89-96
    • /
    • 2005
  • In the present work, production of organophosphorus hydrolase (OPH) that is secreted in periplasmic space of recombinant Escherichia coli was performed for degradation of environmental toxic organophosphate compounds, paraoxon. The optimal conditions for enhancement of OPH production were 1.0 mM isopropyl-${\beta}$-D-thiogalactopytanoside (IPTG), 0.25 mM $Co^{2+}$, and 0.1 mM ethylenediamine tetraacetate (EDTA). Under these culture conditions, the maximum OPH production was $174Unit/L{\cdot}OD$. In addition, 1 mM of paraoxon was completely degraded by OPH. These results can be used as a bioremediation tool for removal of environmental toxic organophosphate compounds remaining in soil and aquatic environment.

  • PDF

Surface Display of Organophosphorus Hydrolase on E. coli Using N-Terminal Domain of Ice Nucleation Protein InaV

  • Khodi, Samaneh;Latifi, Ali Mohammad;Saadati, Mojtaba;Mirzaei, Morteza;Aghamollaei, Hossein
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.234-238
    • /
    • 2012
  • Recombinant Escherichia coli displaying organophosphorus hydrolase (OPH) was used to overcome the diffusion barrier limitation of organophosphorus pesticides. A new anchor system derived from the N-terminal domain of ice-nucleation protein from Pseudomonas syringae InaV (InaV-N) was used to display OPH onto the surface. The designed sequence was cloned in the vector pET-28a(+) and then was expressed in E. coli. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by InaV-N on the outer membrane, and the ability of recombinant E. coli to utilize diazinon as the sole source of energy, without growth inhibition, indicated its significant activity. The location of OPH was detected by comparing the activity of the outer membrane fraction with the inner membrane and cytoplasm fractions. Studies revealed that recombinant E. coli can degrade 50% of 2 mM chlorpyrifos in 2 min. It can be concluded that InaV-N can be used efficiently to display foreign functional protein, and these results highlight the high potential of an engineered bacterium to be used in bioremediation of pesticide-contaminated sources in the environment.

Effect of Addition of Tween 20 and Glycerol in Recombinant Escherichia Coli Culture on Organophosphorus Hydrolase (OPH) Production for Biodrgradation of Coumaphos Insecticide (Coumaphos 살충제의 생분해를 위하여 재조합 대장균 배양에서 Tween 20과 Glycerol 첨가가 유기인분해 효소 생산에 미치는 영향)

  • Choi, Suk Soon;Seo, Sang Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.501-505
    • /
    • 2007
  • Organophosphorus hydrolase (OPH) expressed from recombinant Escherichia coli was used to biodegrade organophosphate insecticide coumaphos which has a very high toxicity in mammalian cells. To improve the productivity of OPH, the effects of nonionic surfactants (Tween 20, PEG 1000) and organic solvents, such as glycerol, propanol, and ethanol, were investigated in the strain culture. The maximum OPH was produced when the 0.25% of Tween 20 and 0.5% of glycerol were added to the medium. As the OPH obtained from disrupt-cell process by ultrasound treatment was used, the biodegradation efficiencies of 0.2, 0.5, 1.0 and 2.0 mM coumaphos were 100, 88, 84 and 78%, respectively. A novel method developed in this study could be applied to the biodetoxification technology in the contaminated region with various coumaphos concentration.

Comparison of the Organophosphorus Hydrolase Surface Display Using InaVN and Lpp-OmpA Systems in Escherichia coli

  • Karami, Ali;Latifi, Ali Mohamad;Khodi, Samaneh
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.379-385
    • /
    • 2014
  • The purpose of this study was to compare the ability of an engineered Escherichia coli to degrade chlorpyrifos (Cp) using an organophosphorus hydrolase enzyme, encoded in both Flavobacterium sp. ATCC 27551 or Pseudomonas diminuta, by employing the Lpp-OmpA chimera and the N-terminal domain of the ice nucleation protein as anchoring motifs. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by both anchors on the outer membrane. This is the first report on the presentation of OPH on the cell surface by Lpp-OmpA under the control of the T7 promoter. The results showed cell growth in the presence of Cp as the sole source of energy, without growth inhibition, and with higher whole-cell activity for both cells harboring plasmids pENVO and pELMO, at approximately 10,342.85 and 10,857.14 U/mg, respectively. Noticeably, the protein displayed by pELMO was lower than the protein displayed by pENVO. It can be concluded that Lpp-OmpA can display less protein, but more functional OPH protein. These results highlight the high potential, of both engineered bacteria, for use in the bioremediation of pesticide-contaminated sources in the environment.

Biodegradation of Organophosphate Pesticide Using Recombinant Cyanobacteria with Surface- and Intracellular-Expressed Organophosphorus Hydrolase

  • Chungjatupornchai, Wipa;Fa-Aroonsawat, Sirirat
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.946-951
    • /
    • 2008
  • The opd gene, encoding organophosphorus hydrolase (OPH) from Flavobacterium sp. capable of degrading a wide range of organophosphate pesticides, was surface- and intracellular-expressed in Synechococcus PCC7942, a prime example of photoautotrophic cyanobacteria. OPH was displayed on the cyanobacterial cell surface using the truncated ice nucleation protein as an anchoring motif. A minor fraction of OPH was displayed onto the outermost surface of cyanobacterial cells, as verified by immunostaining visualized under confocal laser scanning microscopy and OPH activity analysis; however, a substantial fraction of OPH was buried in the cell wall, as demonstrated by proteinase K and lysozyme treatments. The cyanobacterial outer membrane acts as a substrate (paraoxon) diffusion barrier affecting whole-cell biodegradation efficiency. After freeze-thaw treatment, permeabilized whole cells with intracellular-expressed OPH exhibited 14-fold higher bioconversion efficiency ($V_{max}/K_m$) than that of cells with surface-expressed OPH. As cyanobacteria have simple growth requirements and are inexpensive to maintain, expression of OPH in cyanobacteria may lead to the development of a low-cost and low-maintenance biocatalyst that is useful for detoxification of organophosphate pesticides.

Engineered Recombinant PON1-OPH Fusion Hybrids: Potentially Effective Catalytic Bioscavengers against Organophosphorus Nerve Agent Analogs

  • Lee, Nari;Yun, Hyeongseok;Lee, Chan;Lee, Yikjae;Kim, Euna;Kim, Sumi;Jeon, Hyoeun;Yu, Chiho;Rho, Jaerang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.144-153
    • /
    • 2021
  • Organophosphorus nerve agents (OPNAs), including both G- and V-type nerve agents such as sarin, soman, tabun and VX, are extremely neurotoxic organophosphorus compounds. Catalytic bioscavengers capable of hydrolyzing OPNAs are under development because of the low protective effects and adverse side effects of chemical antidotes to OPNA poisoning. However, these bioscavengers have certain limitations for practical application, including low catalytic activity and narrow specificity. In this study, we generated a fusion-hybrid form of engineered recombinant human paraoxonase 1 (rePON1) and bacterial organophosphorus hydrolase (OPH), referred to as GV-hybrids, using a flexible linker to develop more promising catalytic bioscavengers against a broad range of OPNAs. These GV-hybrids were able to synergistically hydrolyze both G-type OPNA analogs (paraoxon: 1.7 ~ 193.7-fold, p-nitrophenyl diphenyl phosphate (PNPDPP): 2.3 ~ 33.0-fold and diisopropyl fluorophosphates (DFP): 1.4 ~ 22.8-fold) and V-type OPNA analogs (demeton-S-methyl (DSM): 1.9 ~ 34.6-fold and malathion: 1.1 ~ 4.2-fold above) better than their individual enzyme forms. Among the GV-hybrid clones, the GV7 clone showed remarkable improvements in the catalytic activity toward both G-type OPNA analogs (kcat/Km (106 M-1 min-1): 59.8 ± 0.06 (paraoxon), 5.2 ± 0.02 (PNPDPP) and 47.0 ± 6.0 (DFP)) and V-type OPNA analogs (kcat/Km (M-1 min-1): 504.3 ± 48.5 (DSM) and 1324.0 ± 47.5 (malathion)). In conclusion, we developed GV-hybrid forms of rePON1 and bacterial OPH mutants as effective and suitable catalytic bioscavengers to hydrolyze a broad range of OPNA analogs.

Fabrication of Microbe-Attached SWNT Film for Biosensor Applications and Organophosphorus Compounds Detection (바이오센서 적용을 위한 미생물이 고정된 부양형 탄소나노튜브 필름 제작과 유기인 화합물 검출)

  • Kim, Intae;An, Taechang;Kim, Chang Sup;Cha, Hyung Joon;Kim, Jin Ho;Lim, Soo Taek;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Microbes have been used extensively in various fields of researches and industries but has not been used widely for microfluidic biosensor applications because it is difficult to immobilize properly to a small space. Therefore, we developed a microbial immobilization method for microfluidic devices using single-walled nanotubes and dielectrophoretic force. Single-walled nanotubes and Escherichia coli were aligned between two cantilever electrodes by a positive dielectrophoretic force resulting in a film of single-walled nanotubes with attached Escherichia coli. The optimal condition of film formation without a cell lysis was investigated. Diameter of single-walled nanotubes and electric field (intensity and duration of application) had an effect on the cell viability. On the other hand, the cell concentration of the suspension did not affect the cell viability. Paraoxon was detected using single-walled nanotubes film with attached Escherichia coli that expressed organophosphorus hydrolase. This film which is suspended from the substrate showed faster response time than sensors that are not suspended from the substrate.

Biodetoxification of Coumaphos Insecticide Using Immobilized Escherichia coli Expressing Organophosphorus Hydrolase Enzyme on Cell Surface

  • Mansee, Ayman H.;Chen, Wilfred;Mulchandani, Ashok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.436-440
    • /
    • 2000
  • Recently, we reported an improved technology for the degradation of organophosphate nerve agents using whole cells of genetically engineered Escherichia coli that anchored and displayed the enzyme organophosphorus hydrolase on the cell surface. In this paper we report the immobilization of these cells on highly porous sintered glass beads and the subsequent application of the immobilized cell in a continuous-flow packed bed bioreactor for the biodetoxification of a widely used insecticide, coumaphos.

  • PDF

Enhancement of Paraoxon Biodegradation Rate from Recombinant Escherichia coli Catalyst for Bioremediation (Bioremediation을 위하여 재조합 대장균 촉매를 이용한 Paraoxon의 생분해 속도 향상)

  • Choi, Suk Soon;Seo, Sang Hwan;Kang, Dong Gyun;Cha, Hyung Joon;Yeom, Sung Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.110-116
    • /
    • 2006
  • In this study, the biodegradation rate of paraoxon, that is an organophosphate pesticide, was enhanced by recombinant Escherichia coli harboring organophosphorus hydrolase (OPH). The optimum conditions were 8.5 of initial pH and 5.0% of acetone for the enhancement of specific whole cell OPH activity. When the OPH was produced to 498 Unit/L, 98% of 275mg/L paraoxon was degraded within 10 minutes, and thus the biodegradation rate was enhanced to $29.2mg/g{\cdot}min$. The results implied that practical bioremediation technology developed in this study was an effective method to degrade residual organophosphate pesticide in ground water or soils in a short time.

  • PDF