Browse > Article
http://dx.doi.org/10.4014/jmb.1309.09066

Comparison of the Organophosphorus Hydrolase Surface Display Using InaVN and Lpp-OmpA Systems in Escherichia coli  

Karami, Ali (Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences)
Latifi, Ali Mohamad (Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences)
Khodi, Samaneh (Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.3, 2014 , pp. 379-385 More about this Journal
Abstract
The purpose of this study was to compare the ability of an engineered Escherichia coli to degrade chlorpyrifos (Cp) using an organophosphorus hydrolase enzyme, encoded in both Flavobacterium sp. ATCC 27551 or Pseudomonas diminuta, by employing the Lpp-OmpA chimera and the N-terminal domain of the ice nucleation protein as anchoring motifs. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by both anchors on the outer membrane. This is the first report on the presentation of OPH on the cell surface by Lpp-OmpA under the control of the T7 promoter. The results showed cell growth in the presence of Cp as the sole source of energy, without growth inhibition, and with higher whole-cell activity for both cells harboring plasmids pENVO and pELMO, at approximately 10,342.85 and 10,857.14 U/mg, respectively. Noticeably, the protein displayed by pELMO was lower than the protein displayed by pENVO. It can be concluded that Lpp-OmpA can display less protein, but more functional OPH protein. These results highlight the high potential, of both engineered bacteria, for use in the bioremediation of pesticide-contaminated sources in the environment.
Keywords
Lpp-OmpA; InaVN; organophosphorus hydrolase; cell surface display; whole-cell activity; chlorpyrifos;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
2 Lakshmi CV, Kumar M, Khanna S. 2009. Biodegradation of chlorpyrifos in soil by enriched cultures. Curr. Microbiol. 58: 35-38.   DOI
3 Latifi AM, Khodi S, Mirzaei M, Miresmaeili M, Babavalian H. 2012. Isolation and characterization of five chlorpyrifos degrading bacteria. Afr. J. Biotechnol. 13: 3140-3146.
4 Alexander WA, Moss B, Fuerst TR. 1992. Regulated expression of foreign genes in vaccinia virus under the control of bacteriophage T7 RNA polymerase and the Escherichia coli lac repressor. J. Virol. 66: 2934-2942.
5 Cycon M, Wojcik M, Piotrowska-Seget Z. 2009. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76: 494-501.   DOI   ScienceOn
6 Yang C, Cai N, Dong M, Jiang H, Li J, Qiao C, et al. 2008. Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. Biotechnol. Bioeng. 99: 30-37.   DOI   ScienceOn
7 Yang Z, Liu Q, Wang Q, Zhang Y. 2008. Novel bacterial surface display systems based on outer membrane anchoring elements from the marine bacterium Vibrio anguillarum. Appl. Environ. Microbiol. 74: 4359-4365.   DOI   ScienceOn
8 Yang C, Freudl R, Qiao C, Mulchandani A. 2010. Cotranslocation of methyl parathion hydrolase to the periplasm and of organophosphorus hydrolase to the cell surface of Escherichia coli by the Tat pathway and ice nucleation protein display system. Appl. Environ. Microbiol. 76: 434-440.   DOI
9 Yang C, Liu N, Guo X, Qiao C. 2006. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol. Lett. 265 118-125.   DOI   ScienceOn
10 Yang C, Zhao Q, Liu Z, Li Q, Qiao C, Mulchandani A, Chen W. 2008. Cell surface display of functional macromolecule fusions on Escherichia coli for development of an autofluorescent whole-cell biocatalyst. Environ. Sci. Technol. 42: 6105-6110.   DOI   ScienceOn
11 Li C, Zhu Y, Benz I, Schmidt MA, Chen W, Mulchandani A, Qiao C. 2008. Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway. Biotechnol. Bioeng. 99: 485-490.   DOI   ScienceOn
12 Li L, Kang DG, Cha HJ. 2004. Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol. Bioeng. 85: 214-221.   DOI   ScienceOn
13 Liu Z, Yang C, Jiang H, Mulchandani A, Chen W, Qiao C. 2009. Simultaneous degradation of organophosphates and 4- substituted phenols by Stenotrophomonas species LZ-1 with surface-displayed organophosphorus hydrolase. J. Agric. Food Chem. 57: 6171-6177.   DOI
14 Lutz R, Bujard H. 1997. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25: 1203-1210.   DOI   ScienceOn
15 Ortiz-Hernandez ML, Sanchez-Salinaz E. 2010. Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Rev. Int. Contam. Ambient. 26: 27-38.
16 Shimazu M, Mulchandani A, Chen W. 2001. Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surfaceexpressed organophosphorus hydrolase. Biotechnol. Bioeng. 76: 318-324.   DOI   ScienceOn
17 Richins RD, Kaneva I, Mulchandani A, Chen W. 1997. Biodegradation of organophosphorus pesticides by surfaceexpressed organophosphorus hydrolase. Nat. Biotechnol. 15: 984-987.   DOI   ScienceOn
18 Shi H, Su WW. 2001. Display of green fluorescent protein on Escherichia coli cell surface. Enzyme Microb. Technol. 28: 25-34.   DOI   ScienceOn
19 Shimazu M, Mulchandani A, Chen W. 2001. Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnol. Prog. 17: 76-80.   DOI   ScienceOn
20 Harper LL, McDaniel CS, Miller CE, Wild JR. 1988. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl. Environ. Microbiol. 54: 2586-2589.
21 Heiat M, Aghamollaei H, Hoseinei SM, Larki RA, Yari K. 2012. Optimization of plasmid electrotransformation into Escherichia coli using Taguchi statistical method. Afr. J. Biotechnol. 11: 7603-7608.
22 Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG. 2002. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68: 3371-3376.   DOI   ScienceOn
23 Horne I, Sutherland TD, Oakeshott JG, Russell RJ. 2002. Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiology 148: 2687-2695.   DOI
24 Jokanovic M. 2001. Biotransformation of organophosphorus compounds. Toxicology 166: 139-160.   DOI
25 Khodi S, Latifi AM, Saadati M, Mirzaei M, Aghamollaei H. 2012. Surface display of organophosphorus hydrolase on E. coli using N-terminal domain of ice nucleation protein InaV. J. Microbiol. Biotechnol. 22: 234-238.   DOI
26 Kuo JM, Chae MY, Raushel FM. 1997. Perturbations to the active site of phosphotriesterase. Biochemistry 36: 1982-1988.   DOI