DOI QR코드

DOI QR Code

Fabrication of Microbe-Attached SWNT Film for Biosensor Applications and Organophosphorus Compounds Detection

바이오센서 적용을 위한 미생물이 고정된 부양형 탄소나노튜브 필름 제작과 유기인 화합물 검출

  • Received : 2013.11.28
  • Accepted : 2013.12.27
  • Published : 2014.01.29

Abstract

Microbes have been used extensively in various fields of researches and industries but has not been used widely for microfluidic biosensor applications because it is difficult to immobilize properly to a small space. Therefore, we developed a microbial immobilization method for microfluidic devices using single-walled nanotubes and dielectrophoretic force. Single-walled nanotubes and Escherichia coli were aligned between two cantilever electrodes by a positive dielectrophoretic force resulting in a film of single-walled nanotubes with attached Escherichia coli. The optimal condition of film formation without a cell lysis was investigated. Diameter of single-walled nanotubes and electric field (intensity and duration of application) had an effect on the cell viability. On the other hand, the cell concentration of the suspension did not affect the cell viability. Paraoxon was detected using single-walled nanotubes film with attached Escherichia coli that expressed organophosphorus hydrolase. This film which is suspended from the substrate showed faster response time than sensors that are not suspended from the substrate.

Keywords

References

  1. H. P. Sorensen and K. K. Mortensen, "Advanced genetic strategies for recombinant protein expression in Escherichia coli", J. Biotechnol., vol. 115, no. 2, pp. 113-128, 2005. https://doi.org/10.1016/j.jbiotec.2004.08.004
  2. J. M. Clomburg and R. Gonzalez, "Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology", Appl. Microbiol. Biotechnol., vol. 86, no. 2, pp. 419-434, 2010. https://doi.org/10.1007/s00253-010-2446-1
  3. F. Baneyx, "Recombinant protein expression in Escherichia coli", Curr. Opin. Biotechnol., vol. 10, no. 5, pp. 411-421, 1999. https://doi.org/10.1016/S0958-1669(99)00003-8
  4. Z. Du, H. Li, and T. Gu, "A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy", Biotechnol. Adv., vol. 25, no. 5, pp. 464-482, 2007. https://doi.org/10.1016/j.biotechadv.2007.05.004
  5. H. Ben-Yoav, A. Biran, R. Pedahzur, S. Belkin, S. Buchinger, G. Reifferscheid, and Y. Shacham-Diamand, "A whole cell electrochemical biosensor for water genotoxicity bio-detection", Electrochimica Acta, vol. 54, no. 25, pp. 6113-6118, 2009. https://doi.org/10.1016/j.electacta.2009.01.061
  6. M. B. Cassidy, H. Lee, and J. T. Trevors, "Environmental applications of immobilized microbial cells: A review", J. Ind. Microbiol., vol. 16, no. 2, pp. 79-101, 1996. https://doi.org/10.1007/BF01570068
  7. Y. Lei, P. Mulchandani, W. Chen, J. Wang, and A. Mulchandani, "Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents withp-nitrophenyl substituent", Biotechnol. Bioeng., vol. 85, no. 7, pp. 706-713, 2004. https://doi.org/10.1002/bit.20022
  8. R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, "Biofuel cells and their development", Biosens. Bioelectron., vol. 21, no. 11, pp. 2015-2045, 2006. https://doi.org/10.1016/j.bios.2006.01.030
  9. P. Mulchandani, W. Chen, A. Mulchandani, J. Wang, and L. Chen, "Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase", Biosens. Bioelectron., vol. 16, no. 7-8, pp. 433- 437, 2001. https://doi.org/10.1016/S0956-5663(01)00157-9
  10. R. D. Richins, I. Kaneva, A. Mulchandani, and W. Chen, "Biodegradation of organophosphorus pesticides by surface- expressed organophosphorus hydrolase", Nat Biotech, vol. 15, no. 10, pp. 984-987, 1997. https://doi.org/10.1038/nbt1097-984
  11. D. G. Kang, S. S. Choi, and H. J. Cha, "Enhanced biodegradation of toxic organophosphate compounds using recombinant escherichia coli with sec pathway-driven periplasmic secretion of organophosphorus hydrolase", Biotechnol. Prog., vol. 22, no. 2, pp. 406-410, 2006. https://doi.org/10.1021/bp050356k
  12. C. S. Kim, B. H. Choi, J. H. Seo, G. Lim, and H. J. Cha, "Mussel adhesive protein-based whole cell array biosensor for detection of organophosphorus compounds", Biosens. Bioelectron., vol. 41, pp. 199-204, 2013. https://doi.org/10.1016/j.bios.2012.08.022
  13. L. E. de-Bashan and Y. Bashan, "Immobilized microalgae for removing pollutants: Review of practical aspects", Bioresour. Technol., vol. 101, no. 6, pp. 1611-1627, 2010. https://doi.org/10.1016/j.biortech.2009.09.043
  14. I. Moreno-Garrido, "Microalgae immobilization: current techniques and uses", Bioresour. Technol., vol. 99, no. 10, pp. 3949-3964, 2008. https://doi.org/10.1016/j.biortech.2007.05.040
  15. J. K. Park and H. N. Chang, "Microencapsulation of microbial cells", Biotechnol. Adv., vol. 18, no. 4, pp. 303-319, 2000. https://doi.org/10.1016/S0734-9750(00)00040-9
  16. S. H. Song, S. S. Choi, K. Park, and Y. J. Yoo, "Novel hybrid immobilization of microorganisms and its applications to biological denitrification", Enzyme Microb. Technol., vol. 37, no. 6, pp. 567-573, 2005. https://doi.org/10.1016/j.enzmictec.2005.07.012
  17. K. Besteman, J. O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, "Enzyme-coated carbon nanotubes as singlemolecule biosensors", Nano Lett., vol. 3, no. 6, pp. 727-730, 2003. https://doi.org/10.1021/nl034139u
  18. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science, vol. 287, no. 5459, pp. 1801-1804, 2000. https://doi.org/10.1126/science.287.5459.1801
  19. K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya, "Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors", Anal. Chem., vol. 79, no. 2, pp. 782-787, 2007. https://doi.org/10.1021/ac060830g
  20. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors", Science, vol. 287, no. 5453, pp. 622-625, 2000. https://doi.org/10.1126/science.287.5453.622
  21. H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, "Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements", J. Am. Chem. Soc., vol. 127, no. 34, pp. 11906- 11907, 2005. https://doi.org/10.1021/ja053094r
  22. Q. Cao and J. A. Rogers, "Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects", Adv. Mater., vol. 21, no. 1, pp. 29-53, 2009. https://doi.org/10.1002/adma.200801995
  23. H. R. Byon and H. C. Choi, "Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications", J. Am. Chem. Soc., vol. 128, no. 7, pp. 2188-2189, 2006. https://doi.org/10.1021/ja056897n
  24. T. An, K. S. Kim, S. K. Hahn, and G. Lim, "Real-time, stepwise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors", Lab Chip, vol. 10, no. 16, p. 2052, 2010. https://doi.org/10.1039/c005276k
  25. C. Zhang, K. Khoshmanesh, A. Mitchell, and K. Kalantarzadeh, "Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems", Anal. Bioanal. Chem., vol. 396, no. 1, pp. 401-420, 2009.
  26. A. Sanchis, A. P. Brown, M. Sancho, G. MartDnez, J. L. Sebastian, S. Munoz, and J. M. Miranda, "Dielectric characterization of bacterial cells using dielectrophoresis", Bioelectromagnetics, vol. 28, no. 5, pp. 393-401, 2007. https://doi.org/10.1002/bem.20317
  27. R. Zhou, P. Wang, and H.-C. Chang, "Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes", Electrophoresis, vol. 27, no. 7, pp. 1376-1385, 2006. https://doi.org/10.1002/elps.200500329
  28. B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, and Y. Fintschenko, "Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators", Anal. Chem., vol. 76, no. 6, pp. 1571-1579, 2004. https://doi.org/10.1021/ac034804j
  29. R. S. Kuczenski, H.-C. Chang, and A. Revzin, "Dielectrophoretic microfluidic device for the continuous sorting of Escherichia coli from blood cells", Biomicrofluidics, vol. 5, no. 3, p. 032005, 2011. https://doi.org/10.1063/1.3608135
  30. P. Arumugam, H. Chen, A. Cassell, and J. Li, "Dielectrophoretic trapping of single bacteria at carbon nanofiber nanoelectrode arrays", J. Phys. Chem. A, vol. 111, no. 49, pp. 12772-12777, 2007.
  31. J. Suehiro, N. Ikeda, A. Ohtsubo, and K. Imasaka, "Fabrication of bio/nano interfaces between biological cells and carbon nanotubes using dielectrophoresis", Microfluid. Nanofluidics, vol. 5, no. 6, pp. 741-747, 2008. https://doi.org/10.1007/s10404-008-0276-6
  32. M. Dimaki and P. Boggild, "Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study", Nanotechnology, vol. 15, no. 8, p. 1095, 2004. https://doi.org/10.1088/0957-4484/15/8/039
  33. J. Suehiro, G. Zhou, and M. Hara, "Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy", J. Phys. Appl. Phys., vol. 36, no. 21, pp. L109-L114, 2003. https://doi.org/10.1088/0022-3727/36/21/L01
  34. P. Li and W. Xue, "Selective deposition and alignment of single-walled carbon nanotubes assisted by dielectrophoresis: From thin films to individual nanotubes", Nanoscale Res. Lett., vol. 5, no. 6, pp. 1072-1078, 2010. https://doi.org/10.1007/s11671-010-9604-3
  35. I. Kim, T. An, and G. Lim, "Organophosphorus compounds detection using suspended SWNT films", J. Sensor Sci.& Tech., vol. 22, no. 5, pp. 346-351, 2013. https://doi.org/10.5369/JSST.2013.22.5.346
  36. I. Kim, T. An, W. Choi, C. S. Kim, H. J. Cha, and G. Lim, "Site-specific immobilization of microbes using carbon nanotubes and dielectrophoretic force for microfluidic applications", RSC Adv., 2013.
  37. J. T. Cang-Rong and G. Pastorin, "The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies", Nanotechnology, vol. 20, no. 25, p. 255102, 2009. https://doi.org/10.1088/0957-4484/20/25/255102
  38. A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J. W. Seo, M. Celio, S. Catsicas, B. Schwaller, and L. Forro, "Cellular toxicity of carbon-based nanomaterials", Nano Lett., vol. 6, no. 6, pp. 1121-1125, 2006. https://doi.org/10.1021/nl060162e
  39. N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, "Nanomaterials for neural interfaces", Adv. Mater., vol. 21, no. 40, pp. 3970-4004, 2009. https://doi.org/10.1002/adma.200801984
  40. S. K. Jha, R. Chand, D. Han, Y. C. Jang, G.-S. Ra, J. S. Kim, B. H. Nahm, and Y. S. Kim, "An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis", Lab. Chip, vol. 12, no. 21, p. 4455, 2012. https://doi.org/10.1039/c2lc40727b
  41. T. An, I. Kim, and G. Lim, "Nitrophenol detection using suspended SWNT films for environmental monitoring", in Sensors, 2010 IEEE, 2010, pp. 1514-1517.
  42. N. Liu, X. Cai, Y. Lei, Q. Zhang, M. B. Chan-Park, C. Li, W. Chen, and A. Mulchandani, "Single-walled carbon nanotube based real-time organophosphate detector", Electroanalysis, vol. 19, no. 5, pp. 616-619, 2007. https://doi.org/10.1002/elan.200603761