• Title/Summary/Keyword: organophosphorus

Search Result 221, Processing Time 0.024 seconds

An Evaluation of Liquid Chromatography/Mass Specrometry with Atmospheric Pressure Chemical Ionizarion for the Rapid and Simultaneous Measurement of Carbamate Pesticides and Organophosphorus Pesticides

  • Kim, Byeong Ju;So, Hyeon Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.471-476
    • /
    • 2000
  • Liquid chromatography/mass spectrometry with an atmospheric pressure chemical ionization interface (LC/APCI/MS) is evaluated for the simultaneous determination of carbamate pesticides and organophosphorus pesticides in a single chromatographic analysis. APCI mass spectra of those compounds were obtrained to study their ionization characteristics. APCI provided abundant ions such as protonated molecules and characteristic fragment ions for carbamate pesticides and organophosphorus pesticides. To evaluate the feasibility of the LC/APCI/MS for a routine quantitative analysis, the linearity and repeatability of LC/APCI/MS were examined by measuring standard solution mixtures of five carbamate pesticides and four organophosphorus pesticides over the range of 1 to 100 ㎍/mL. Teh peak areas in chromatograms of characteristic ions for those compounds showed less than 3% of variation from run to run. The standard calibration curves for the nine pesticides show good linearity in the concentration range. The detection limits of the LC/APCI/MS system for those compounds range from 0.006 to 0.2 ng.

GC-MS Analysis of Organophosphorus Pesticide Residue in Seawater From the Kwangyang Bay, Korea (광양만 해수 중 유기인 잔류 농약성분의 GC-MS 분석)

  • Park, Mi-Ok;Park, Jeom-Sook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.293-304
    • /
    • 2006
  • Sea water samples collected in August, 1994 from 20 stations in the Kwangyang Bay were analyzed by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) to investigate persistence and distribution pattern of four organophosphorus pesticides (DDVP, Diazinon, IBP, EDDP). Except for IBP, the contamination by DDVP, Diazinon, and EDDP in marine aquatic environment in Korea has not been reported previously. In this study, however, all these four pesticides were detected in all stations (except DDVP) and their concentrations were in ng/L level. The concentrations ranged from detection limit to 15.3ng/L for DDVP, 1.8-27.7ng/L for Diazinon, 7.3-63.5ng/L for IBP, and 22.2-1100.1ng/L for EDDP. It is noteworthy that the measured concentrations of IBP and EDDP in this study would be much lower than usual, since the use of IBP and EDDP was less than 50% of average annual consumption due to unusually dry and hot weather condition in the summer of 1994. It was very surprising to find that the highest concentrations of organophosphorus pesticides were observed at stations near Daesa Streamlet instead of Seomjin River, which has more point source of the pesticides. This result suggests that the small river discharge during heavy ram period in summer can give harmful effect on marine biota (both wild and aqua-cultured) with its organophosphorus pesticide residue, despite of their short residence time in aquatic environment. In order to protect the marine life properly from acute toxicity of the organophosphorus pesticides, it needs to be emphasized that monitoring the level of agricultural pesticides in river run-off should be done during active consumption period rather at regular intervals.

Development of Prototype Biosensor for The Detection of Organophosporus Compounds (유기인화합물 측정용 광바이오센서 개발)

  • 최정우;김종민;이원홍;김영기
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.158-161
    • /
    • 2002
  • In this study, a prototype fiber-optic biosensor was fabricated using the inhibition of enzyme reaction by organophosphorus compounds to detect organophosphorus compounds, which is nervous toxic material an? is used as chemical weapon and pesticide. Enzyme, substrate, and inhibitor for enzyme reaction were acetylcholinesterase (key enzyme in nervous cell), acetylthiocholine iodide, and paraoxon (a kind of organophosphorus compounds), respectively. The detection principle of sensor is the detection of enzyme reaction inhibited by organophosphorus compounds by the quantitative measurement of acetic acid, which was achieved by absorbance measurement using litmus solution that maximum absorbance band is changed by pH. To fabricate prototype fiber-optic biosensor, high bright LED and photodiode was used as light source and light intensity detector, respectively. From the experimental results using a prototype biosensor, the linear change of sensor signal was obtained in a range of 0-2 ppm inhibitor concentrations. From these results, it was verified that the quantitative measurement of organophosphorus compounds could be achieved fast (within 2 minutes) and accurately by a prototype fiber-optic biosensor.

Residue of Organophosphorus and Organochlorine Pesticides in Fresh Ginseng and Red Ginseng Extract (수삼과 홍삼농축액 중 유기인계와 유기염소계 농약의 잔류)

  • Kim, Jung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.337-342
    • /
    • 2007
  • To obtain the data on the risk assessment of residue levels of organophosphorus and organochlorine pesticides in fresh ginseng and red ginseng extract, the residual pesticides in samples are surveyed with GC-NPD and GC-ECD for quantitative analysis and GC-MSD for qualitative analysis. The residual organophosphorus pesticides, such as diazinon, pyrimethanil, tolclofos-methyl, metalaxyl, diethofencarb, parathion, cyprodinil, tolylfluanid and kresoxim-methyl, are not detected in fresh ginseng from Punggi. The residual organophosphorus pesticides except tolclofos-methyl are not detected in fresh ginseng from Sangju. Average amount of tolclofos-methyl in fresh ginseng from Sangju are $0.054{\pm}0.008\;mg/kg$, representing $18{\pm}2%$ of MRL of 0.03 mg/kg on fresh ginseng in Korea. The residual organochlorine pesticides, such as BHC isomer, DDT isomer, aldrin, azoxystrobin, captan, cypermethrin, deltamethrin, dieldrin, difenoconazole, endosulfan-sulfate, endrin, fenhexamid, quintozene, ${\alpha}$-endosulfan and ${\beta}$-endosulfan, are not detected in fresh ginseng from Punggi and Sangju. The residual organophosphorus and organochlorine pesticides in red ginseng extract from Punggi and Sangju are not detected.

The Relationship between Frequency Score of Wearing Personal Protective Equipment and Concentration of Urinary Organophosphorus Pesticide Metabolites in Farmers (일부 농업인의 개인보호구 착용빈도 점수와 요 중 유기인계 농약 대사체 농도와의 연관성)

  • Choi, Jihee;Moon, Sun-In;Roh, Sangchul
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.583-593
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate the relationship between the frequency score of wearing personal protective equipment (PPE) and concentration of urinary organophosphorus pesticide metabolites in farmers. Methods: The study was conducted in Chungcheongnam-do Province of South Korea. We collected urine samples from 308 farmers from September to December 2017 and May to July 2018. Among them, 17 farmers with urinary creatinine levels outside the normal range were excluded. Information on the frequency of wearing PPE was obtained from the farmers through face-to-face survey. Each frequency of wearing for seven types of PPE was converted into a score and expressed as a total score, which was divided into quartiles. Four types of urinary organophosphorus pesticide metabolites were analyzed using a gas chromatography mass selective detector. Multiple linear regression analysis was used to identify concentrations of urinary organophosphorus pesticide metabolites affected by the frequency of wearing PPE. Results: The average frequency score of wearing PPE was 8.0. The quartiles of frequency score of wearing PPE were divided as follows: 1st quartile (≤1), 2nd quartile (1-6), 3rd quartile (6-12), and 4th quartile (>12). Compared with subjects with a low frequency score of wearing PPE (reference), subjects with a high frequency score of wearing PPE (4th quartile) had lower concentrations of urinary diethyl phosphate (DEP) (p<0.01) and dialkyl phosphate (ΣDAP) (p<0.05), which is the sum of dimethyl phosphate (DMP), DEP, dimethyl thiophosphate (DMTP), and diethyl thiophosphate (DETP). Conclusion: Concentrations of urinary organophosphorus pesticide metabolites were associated with frequency score of wearing PPE. Particularly as the frequency score of wearing PPE increased, concentrations of urinary DMP, DEP, DETP, and ΣDAP significantly decreased. The findings of this study can contribute to the management of health effects among farmers working with pesticides.

Engineered Recombinant PON1-OPH Fusion Hybrids: Potentially Effective Catalytic Bioscavengers against Organophosphorus Nerve Agent Analogs

  • Lee, Nari;Yun, Hyeongseok;Lee, Chan;Lee, Yikjae;Kim, Euna;Kim, Sumi;Jeon, Hyoeun;Yu, Chiho;Rho, Jaerang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.144-153
    • /
    • 2021
  • Organophosphorus nerve agents (OPNAs), including both G- and V-type nerve agents such as sarin, soman, tabun and VX, are extremely neurotoxic organophosphorus compounds. Catalytic bioscavengers capable of hydrolyzing OPNAs are under development because of the low protective effects and adverse side effects of chemical antidotes to OPNA poisoning. However, these bioscavengers have certain limitations for practical application, including low catalytic activity and narrow specificity. In this study, we generated a fusion-hybrid form of engineered recombinant human paraoxonase 1 (rePON1) and bacterial organophosphorus hydrolase (OPH), referred to as GV-hybrids, using a flexible linker to develop more promising catalytic bioscavengers against a broad range of OPNAs. These GV-hybrids were able to synergistically hydrolyze both G-type OPNA analogs (paraoxon: 1.7 ~ 193.7-fold, p-nitrophenyl diphenyl phosphate (PNPDPP): 2.3 ~ 33.0-fold and diisopropyl fluorophosphates (DFP): 1.4 ~ 22.8-fold) and V-type OPNA analogs (demeton-S-methyl (DSM): 1.9 ~ 34.6-fold and malathion: 1.1 ~ 4.2-fold above) better than their individual enzyme forms. Among the GV-hybrid clones, the GV7 clone showed remarkable improvements in the catalytic activity toward both G-type OPNA analogs (kcat/Km (106 M-1 min-1): 59.8 ± 0.06 (paraoxon), 5.2 ± 0.02 (PNPDPP) and 47.0 ± 6.0 (DFP)) and V-type OPNA analogs (kcat/Km (M-1 min-1): 504.3 ± 48.5 (DSM) and 1324.0 ± 47.5 (malathion)). In conclusion, we developed GV-hybrid forms of rePON1 and bacterial OPH mutants as effective and suitable catalytic bioscavengers to hydrolyze a broad range of OPNA analogs.

Development of Analytical Method and Monitoring of Organophosphorus Pesticides in the Raw Water and Clean Water by Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS를 이용한 유기인계 농약류의 최적 분석법 정립과 원·정수에서의 모니터링)

  • Kim, Gyung-A;Song, Mi-Jeong;Yeom, Hoon-Sik;Son, Hee-Jong;Lee, Sang-Won;Choi, Jin-Tack
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1569-1582
    • /
    • 2015
  • The analytical method for 16 organophosphorus pesticides was developed in this study. The 16 organophosphorus pesticides were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) using on-line solid phase extraction (on-line SPE) with PLRP- S cartridge. Analysis of all analytes in the MS/MS was processed in the electrospray ioni-zation (ESI) positive mode. They are Azinphos ethyl, Chlorfenvinphos, Ethion, Famphur, Phosmet, Phosphamidon, Terbufos, Aspon, Chlorpyrifos-methyl, Crotoxyphos, Dichlofenthi-on, Dicrotophos, Fonofos, Thionazin, Dimethoate and Iprobenfos. Limits of detection (LODs) and Limits of quantification(LOQs) were obtained as 0.8~2.0 ng/L and 2.6~6.4 ng/L, respectively. All compounds were not detected at the 8 sampling points of the raw water and clean water.

Nitrate Content and Organophosphorus Pesticide Residues in Edible Part of Organic Farming Vegetables (시판 유기농법 재배 채소류의 질산염 및 유기인계 잔류농약의 함량)

  • 박영숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.471-476
    • /
    • 1998
  • The NO3 contents and organophosphorus pesticide residues in edible part of vegetables cultivated by a conventional or an organic farming methods were determined. The NO3 contents of vegetables cultivated by the organic farming method were between 120ppm and 4,523ppm, whereas its contents of vegetables cultivated by the conventional farming method were between 89ppm and 1,575ppm. Fifty two percent of vegetables cultivated by hte organic farming method accumulated NO3 content over than 2,000ppm, whereas 82% vegetables cultivated by the conventional farming method accumulated NO3 content below than 1,000ppm. The NO3 contents of lettuce dependent on the cultivation method obviously. The NO3 contents of lettuce cultivated by a hydroponic farming method were between 4,800 and 6,500ppm, whereas those cultivated by the conventional method were between 630 and 750ppm. The organophosphorus pesticide residues in edible part of vegetables cultivated by the conventional or the organic farming methods were not detected. The NO3 contents in edible part of vegetables cultivated by the organic farming method should be considered as one of several parameters to judge a real safe vegetable to be certified by goverment.

  • PDF

Surface Display of Organophosphorus Hydrolase on E. coli Using N-Terminal Domain of Ice Nucleation Protein InaV

  • Khodi, Samaneh;Latifi, Ali Mohammad;Saadati, Mojtaba;Mirzaei, Morteza;Aghamollaei, Hossein
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.234-238
    • /
    • 2012
  • Recombinant Escherichia coli displaying organophosphorus hydrolase (OPH) was used to overcome the diffusion barrier limitation of organophosphorus pesticides. A new anchor system derived from the N-terminal domain of ice-nucleation protein from Pseudomonas syringae InaV (InaV-N) was used to display OPH onto the surface. The designed sequence was cloned in the vector pET-28a(+) and then was expressed in E. coli. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by InaV-N on the outer membrane, and the ability of recombinant E. coli to utilize diazinon as the sole source of energy, without growth inhibition, indicated its significant activity. The location of OPH was detected by comparing the activity of the outer membrane fraction with the inner membrane and cytoplasm fractions. Studies revealed that recombinant E. coli can degrade 50% of 2 mM chlorpyrifos in 2 min. It can be concluded that InaV-N can be used efficiently to display foreign functional protein, and these results highlight the high potential of an engineered bacterium to be used in bioremediation of pesticide-contaminated sources in the environment.

Biological Monitoring of the Exposure Level of Organophosphorus and Pyrethroid Pesticides in Floriculture Workers and Florists (화훼작업 종사자의 유기인계 및 피레스로이드 살충제 노출에 대한 생물학적 모니터링)

  • Song, Jae Seok;Kwon, Ki Doo;Choi, Hong Soon;Yu, Ho Young
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2014
  • This study was performed to evaluate the exposure level of organophosphorus and pyrethroid pesticide to floriculture workers and florists. The urinary dialkylphosphates, metabolites of organophosphorus insecticides, including dimethylphosphate (DMP), diethylphosphate (DEP), dimethylthiophosphate (DMTP), diethylthiophosphate(DETP) and pyrethroids of metabolites, cis/trans DCCA, DBCA, and 3-PBA were analysed to evaluate the exposure of organophosphorus and pyrethroid pesticide to floriculture workers and florists. The concentration of DMP is highest in floriculture workers. but the concentration of DETP is highest in retail florist. The concentration of 3-PBA is highest in floriculture workers. The amount of organophosphorus and pyrethroid pesticide expusure is highest in flower workers, wholesale florist and retail florists are followed. The management for reducing pesticide exposure to floriculture workers and wholesale florist is required.