• 제목/요약/키워드: organic transistor

검색결과 367건 처리시간 0.037초

F16CuPc를 이용한 Field Effect Transistor의 전기적 특성 연구 (Electrical Properties of Field Effect Transistor using F16CuPc)

  • 이호식;박용필;천민우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.389-390
    • /
    • 2008
  • We fabricated organic field-effect transistors (OFETs) based a fluorinated copper phthalocyanine ($F_{16}CuPc$) as an active layer. And we observed the surface morphology of the $F_{16}CuPc$ thin film. The $F_{16}CuPc$ thin film thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in $F_{16}CuPc$ FET and we calculated the effective mobility.

  • PDF

CuPc Field-effect Transistor의 전기적 특성 (Electrical Properties of CuPc Field-effect Transistor)

  • 이호식;박용필
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.619-621
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

전극 변화에 따른 CuPc Field-effect Transistor의 전기적 특성 (Electrical Properties of CuPc Field-effect Transistor with Different Electrodes)

  • 이호식;박용필;천민우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.506-507
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel device was width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

전극에 따른 CuPc Field-effect Transistor의 전기적 특성 (Electrical Properties of CuPc Field-effect Transistor with Different Electrodes)

  • 이호식;박용필;천민우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 논문집
    • /
    • pp.12-13
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

Electrical Properties of a CuPc Field-Effect Transistor Using a UV/Ozone Treated and Untreated Substrate

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권1호
    • /
    • pp.40-42
    • /
    • 2011
  • An organic field-effect transistor (OFET) was fabricated using a copper phthalocyanine (CuPc) as the active layer on the silicon substrate. The CuPc FET device was configured as a top-contact type. The substrate temperature was room temperature. The CuPc thickness was 40 nm, and the channel length and channel width were 100 ${\mu}m$ 3 mm, respectively. Typical current-voltage (I-V) characteristics of the CuPc FET were observed and subsequently compared to the UV/ozone treatment on substrate surface.

스퍼터링 Mo 도핑 탄소박막의 특성과 유기박막트랜지스터의 게이트 전극으로 응용 (Characteristics of Sputtering Mo Doped Carbon Films and the Application as the Gate Electrode in Organic Thin Film Transistor)

  • 김영곤;박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제30권1호
    • /
    • pp.23-26
    • /
    • 2017
  • Mo doped carbon (C:Mo) thin films were fabricated with various Mo target power densities by unbalanced magnetron sputtering (UBM). The effects of target power density on the surface, structural, and electrical properties of C:Mo films were investigated. UBM sputtered C:Mo thin films exhibited smooth and uniform surfaces. However, the rms surface roughness of C:Mo films were increased with the increase of target power density. Also, the resistivity value of C:Mo film as electrical properties was decreased with the increase of target power density. From the performance of organic thin filml transistor using conductive C:Mo gate electrode, the carrier mobility, threshold voltage, and on/off ratio of drain current (Ion/Ioff) showed $0.16cm^2/V{\cdot}s$, -6.0 V, and $7.7{\times}10^4$, respectively.

Molecular Distribution depending on the Cooling-off Condition in a Solution-Processed 6,13-Bis(triisopropylsilylethynyl)-Pentacene Thin-Film Transistor

  • Park, Jae-Hoon;Bae, Jin-Hyuk
    • 한국응용과학기술학회지
    • /
    • 제31권3호
    • /
    • pp.402-407
    • /
    • 2014
  • Herein, we describe the effect of the cooling-off condition of a solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) film on its molecular distribution and the resultant electrical properties. Since the solvent in a TIPS-pentacene droplet gradually evaporates from the rim to the center exhibiting a radial form of solute, for a quenched case, domains of the TIPS-pentacene film are aboriginally spread showing original features of radial shape due to suppressed molecular rearrangement during the momentary cooling period. For the slowly cooled case, however, TIPS-pentacene molecules are randomly rearranged during the long cooling period. As a result, in the lopsided electrodes structure proposed in this work, the charge transport generates more effectively under the case for radial distribution induced by the quenching technique. It was found that the molecular redistribution during the cooling-period plays an important role on the magnitude of the mobility in a solution-processed organic transistor. This work provides at least a scientific basis between the molecular distribution and electrical properties in solution-processed organic devices.