• Title/Summary/Keyword: organic nitrogen

Search Result 2,515, Processing Time 0.028 seconds

Trends of microbial electrochemical technologies for nitrogen removal in wastewater treatment (하폐수처리에서 질소 제거를 위한 미생물 전기화학 기술의 동향)

  • Chai, Hyungwon;Choi, Yonghoon;Kim, Myeongwoon;Kim, Youngjin;Jung, Sokhee P.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.345-356
    • /
    • 2020
  • The removal of organic carbon and nutrients (i.e. N and P) from wastewater is essential for the protection of the water environment. Especially, nitrogen compounds cause eutrophication in the water environment, resulting in bad water quality. Conventional nitrogen removal systems require high aeration costs and additional organic carbon. Microbial electrochemical system (MES) is a sustainable environmental system that treats wastewater and produces energy or valuable chemicals by using microbial electrochemical reaction. Innovative and cost-effective nitrogen removal is feasible by using MESs and increasing attention has been given to the MES development. In this review, recent trends of MESs for nitrogen removal and their mechanism were conclusively reviewed and future research outlooks were also introduced.

Studies on the inhibitory substance of yeast growth (Part II ) Effect on the nitrogen uptake (항효모성 물질에 관한 연구 (제II보) 질소대사와의 관계)

  • 서정훈;송방호;유춘발
    • Microbiology and Biotechnology Letters
    • /
    • v.1 no.1
    • /
    • pp.3-11
    • /
    • 1973
  • The biochemical characteristics of Astradix -P, isolated from Astragalus membranaceus Bunge as yeaststatic substance, were reported on a previous paper. And on this report, some relation to the nitrogen metabolism of yeast was studied. Inorganic or organic source of nitrogen easily uptaking yeast did not show any antagonistic action to the inhibitory action of Astradix -P on the yeast growth. Especially an organic nitrogen source, arginine, histidine and lysine, classified to basic amino acid, was reacted as an antagonistic substance to the sample. But, ornithine, a basic amino acid, did not show any antagonistic action to the sample. In the mixed media containing neutral and acidic amino acids as a nitrogen source, yeast growth was inhibited strongly. If the basic amino acid was added to the same mixed media, the yeast growth was not inhibited by Astradix-P therefore, the antagonistic action of basic amino acid to the Astradix-p was readily observed. The yeast static action of Astradix-P was partially related to the isoelectric point of amino acid as a nitrogen source. Yeast cells which propagated under the media containing growth inhibitor, Astradix -p, did not bring any remarkable denaturation of cell structure by electro-microscopic observation.

  • PDF

Retention properties of organic matters and nutrients in wetland soils and coastal sediments (습지토양 및 연안퇴적물의 유기물질 및 영양물질 보유 특성)

  • Park, Soyoung;Yi, Yong Min;Yoon, Han-Sam;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.265-275
    • /
    • 2012
  • As climate change is becoming a growing concern and the importance of water management is increasing, the retention of carbon and nutrients in wetland soils including inland and coastal area has become important. In this study, retention characteristics of organic matter and nutrients of coastal sediment and soils in different types of wetlands such as constructed wetland, natural (inland marsh, estuary, tidal flat) wetlands were investigated. A correlation analysis was also performed to understand the relationship among organic matter properties, nutrient concentrations and soil texture of wetland soils. The degree of retention of organic matter and nitrogen in wetland soils varied with the wetland type. Inland wetlands retain more nitrogen than estuary or coastal wetlands, and natural wetlands retain more organic matter and nitrogen than constructed ones. Coastal sediments in a bay area where seawater circulation is restricted have more nutrients than those in estuary or tidal flats where seawater circulates well. The results showed that the sediment chemical oxygen demand has a high correlation with the total organic carbon and the total nitrogen in the studied area.

Formation of Organic Chloramines during Monochloramination of Natural Organic Matters (천연유기물과 모노클로라민의 반응시 유기성 클로라민 생성)

  • Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.604-608
    • /
    • 2014
  • This study investigated influence of dissolved organic nitrogen (DON) in natural organic matter (NOM) on the formation of organic chloramines upon monochloramination. Ratios of dissolved organic carbon (DOC) to DON of the 16 NOM isolates ranged from 7 to 47 mg-C/mg-N. Levels of organic chloramines maxed in 24 hours at $0.16mg-Cl_2/mg-N$ in average. The yields were relatively lower, but decay of organic chloramines were slower than those upon chlorination. Organic chloramines formed upon monochloramination decreased by 56% in average in 120 h. NOM with lower DOC/DON ratios formed more organic chloramines. NOM fractions such as hydrophobic, hydrophilic, transphilic, and colloidal did not significantly impact formation of organic chloramines. As the monochloramine doses increased, more organic chloramines were produced ($R^2=0.91$). Overestimation of disinfection capacity due to the formation of organic chloramines may not be concerns for monochloramine systems since only 6% of monochloramine could be converted to organic chloramines upon monochloramination of NOM.

Emission characteristic of ammonia in cement mortars using different sand from area of production

  • Jang, Hongseok;So, Hyoungseok;So, Seungyoung
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.241-246
    • /
    • 2016
  • This paper discusses the influence of organic matter contained in aggregate on the emission characteristic of ammonia ($NH_3$) from cement mortar. $NH_3$ can be released to indoor-outdoor environment through diffusion in mortar (or concrete) and have resulted in the increasing air pollution, and especially well known as a harmful gas for the human body. The concentration of $NH_3$ released from cement concrete was then compared to the contents of organic matter contained in the aggregate. The result indicates that the contents of organic matter in the aggregate significantly differ with types of aggregate from different areas of production. The organic matter becomes organic nitrogen through the process of microbial breakdown for a certain period and pure ammonium ion ($NH_4{^+}$) is produced from the organic nitrogen. The $NH_4{^+}$ was reacted with alkaline elements in the cement and released as $NH_3$ from cement concrete through a volatile process. The released $NH_3$ was proportional to the contents of $NH_4{^+}$ adsorbed in the aggregate from different areas of production and the concentrations of $NH_3$ emission from cement mortar according to the aggregate differ by more than 4 times.

Biological Treatment of Livestock Wastewater using Aerobic Granular Sludge (호기성 그래뉼 슬러지를 이용한 축산폐수의 생물학적 처리에 관한 연구)

  • Hyun-Gu Kim;Dae-Hee Ahn
    • Journal of Environmental Science International
    • /
    • v.32 no.7
    • /
    • pp.483-492
    • /
    • 2023
  • In this study, the treatment of livestock wastewater using an aerobic granular sludge based sequencing batch reactor was investigated. The reactor operation was carried out by general injection and split injection methods. The average removal efficiency of organic matter after the adaptation period was 71.5 and 87.4%, respectively. Some untreated organic matter was attributed to recalcitrant organic matter. The average removal efficiency of total nitrogen was 65.6 and 88.4%, respectively. These results indicate that the denitrification reaction by split injection was carried out smoothly. As for the solids, the ratio of aerobic granular sludge/mixed liquor suspended solid can be determined as the main factor of the process operation, and the ratio increased gradually and finally reached 86.0%. Correspondingly, the sludge volume index (SVI) was also improved, reaching 54 mL/g at the end of operation, and it is believed that the application of a short settling time contributed to the improvement of settleability.

Effects of thinning intensity on nutrient concentration and enzyme activity in Larix kaempferi forest soils

  • Kim, Seongjun;Han, Seung Hyun;Li, Guanlin;Yoon, Tae Kyung;Lee, Sang-Tae;Kim, Choonsig;Son, Yowhan
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.5-11
    • /
    • 2016
  • Background: As the decomposition of lignocellulosic compounds is a rate-limiting stage in the nutrient mineralization from organic matters, elucidation of the changes in soil enzyme activity can provide insight into the nutrient dynamics and ecosystem functioning. The current study aimed to assess the effect of thinning intensities on soil conditions. Un-thinned control, 20 % thinning, and 30 % thinning treatments were applied to a Larix kaempferi forest, and total carbon and nitrogen, total carbon to total nitrogen ratio, extractable nutrients (inorganic nitrogen, phosphorus, calcium, magnesium, potassium), and enzyme activities (acid phosphatase, ${\beta}$-glucosidase, ${\beta}$-xylosidase, ${\beta}$-glucosaminidase) were investigated. Results: Total carbon and nitrogen concentrations were significantly increased in the 30 % thinning treatment, whereas both the 20 and 30 % thinning treatments did not change total carbon to total nitrogen ratio. Inorganic nitrogen and extractable calcium and magnesium concentrations were significantly increased in the 20 % thinning treatment; however, no significant changes were found for extractable phosphorus and potassium concentrations either in the 20 or the 30 % thinning treatment. However, the applied thinning intensities had no significant influences on acid phosphatase, ${\beta}$-glucosidase, ${\beta}$-xylosidase, and ${\beta}$-glucosaminidase activities. Conclusions: These results indicated that thinning can elevate soil organic matter quantity and nutrient availability, and different thinning intensities may affect extractable soil nutrients inconsistently. The results also demonstrated that such inconsistent patterns in extractable nutrient concentrations after thinning might not be fully explained by the shifts in the enzyme-mediated nutrient mineralization.

( Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth III. Effect of cutting date on the content of organic reserves on the wintering period and forage yeild in rape( Brassica napus L. ) (저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 III. 추파 유채 ( Brassica napus L. ) 의 예취기시가 월동중 저장유기물 함량 및 수량에 미치는 영향)

  • 김태환;김기원;정우진;전해열;김병호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.4
    • /
    • pp.238-244
    • /
    • 1995
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survial or regrowth yield. Forage rape(Brassica napus L.) was sown on Sep. 1, 1994. Experimental plots were divided into three replicates under 6 different cutting dates(l0 days interval from Oct. 15 to Dec. 4). Field-grown palnts were sampled on the each cutting date and on the wintering period (Jan. 16) to analyze the nitrogen and non-structural cahohydrate reserves. The rate of winter survival and regrowth yield were also measured in the spring of next year. On the before wintering, dry matter yields were 152, 274, 500, 718, 776 and 981 kg/lOa, respectively, from the cutting date on Oct. 15, Oct. 25, Nov. 4, Nov. 14, Nov. 24, and Dec. 4. Cmde protein yield significantly increased as cutting date was later until Nov. 14, thereafter a significant increase did not occured. Nitrogen and starch contents per plant significnatly increased as the cutting date was later. The increasing rate of starch was greatly higher than that of nitrogen. On the wintering period, nitrogen reserves in mts were 85.3, 68.8, 47.6, 28.3, 44.3, and 55.3 mglplant, and starch reserve were 11 1.3, 75.3, 39.3, 19.6, 26.4 and 34.6 mglplant, respectively, in the plots cut on Oct. 15, Oct. 25, Nov. 4, Nov. 14, Nov. 24, and Dec. 4. It showed that carbohydrate reserves were much highly utilized than nitrogen reserves during wintering period. The rates of winter survival were 91, 83, 46, 22, 35 and 43% and regrowth yields were 692, 545, 316, 84, 127 and 140 kgD.M/lOa, respectively, in each plots. The highly significant correlation (p<0.01) between the level of organic reserves and the rate of winter survival or regrowth yield were obtained.

  • PDF

Relationship between Vegetation Composition and Dissolved Nitrogen in Wetlands of Higashi-Hiroshima, West Japan

  • Miandoab, Azam Haidary;Nakane, Kaneyuki
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.209-223
    • /
    • 2007
  • Twenty-four wetlands located in Higashi-Hiroshima City in West Japan were selected for this study in order to investigate both the relationship between aquatic plant composition and environmental conditions; and the relationship between changing land use patterns in the catchments and the concentration of different forms of nitrogen in the wetlands. The dominant and subdominant species which comprised the principal vegetation were determined based on a vegetation census conducted in each wetland during the growing season from June to August, 2006. The seasonal variations of water quality factors (pH, electrical conductivity, turbidity, dissolved oxygen, total dissolved solid, and temperature) and different forms of nitrogen such as nitrite, nitrate, ammonium, total nitrogen, dissolved organic nitrogen and dissolved inorganic nitrogen concentrations were analyzed as important indicators of water quality for the surface water of the wetlands. The surveyed wetlands were classified into three types (non-disturbed wetlands, moderately-disturbed wetlands and highly-disturbed wetlands), based on the degree of human disturbance to their catchment areas. An analysis of variance indicated that there was a significant difference among the wetland groups in the annual mean values of electrical conductivity, total dissolved solids, total nitrogen, nitrite, dissolved inorganic nitrogen and dissolved organic nitrogen. Classification of the wetlands into three groups has revealed a pattern of changes in the composition of plant species in the wetlands and a pattern of changes in nitrogen concentrations. A majority of the non-disturbed wetlands were characterized by Brasenia schrebi and Trapa bispinosa as dominant; with Potamogeton fryeri and Iris pesudacorus as sub-dominant species. For most of the moderately-disturbed wetlands, Brasenia schrebi were shown to be a dominant species; Elocheriss kuriguwai and Phragmites australis were observed as sub-dominant species. For a majority of the highly-disturbed wetlands, Typha latifolia and T. angustifolia were observed as dominant species, and Nymphea tetragona as the sub-dominant species in the study area. An analysis of land use and water quality factors indicated that forest area played a considerable role in reducing the concentration of nutrients, and can act as a sink for surface/subsurface nutrient inputs flowing into wetland water, anchor the soil, and lower erosion rates into wetlands.

Effect of Organic Materials Use Recommendation System on Soil N Mineralization and Rice Productivity in Organic Paddy (유기자원 사용처방 기준 적용에 따른 토양 질소 무기화 및 유기 벼 생산성)

  • Lee, Cho-Rong;Lee, Sang-min;Hwang, Hyeon-Yeong;Kwon, Hyeok-Gyu;Jung, Jung A;An, Nan-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.2
    • /
    • pp.15-23
    • /
    • 2021
  • This study was conducted to evaluate the field application of the developed recommendation system in organic rice (Oriza sativa L.) paddy and to investigate the mineral nitrogen content in soil and rice productivity. According to the developed system, hairy vetch (HV), rye+rapeseed oil cake (R+OC), rapeseed oil cake (OC) for only basal fertilization (OC-B), OC for split application (OC-S), pig manure compost (PMC), and chemical fertilizer (CHM) were applied to paddy soil at the rate of 107~133 kg N/ha. Results were followed, unhulled rice yield of OC-S (111%), OC-B (110), R+OC (106), HV (101), and PMC (96) were no significantly different with CHM (100). Also there was positive correlation (R2=0.803*) between unhulled rice yield and cumulative inorganic N in soil. For nitrogen use efficiency of rice, OC-B, OC-S, and R+OC were not significantly different with CHM. In conclusions, the developed organic materials use recommendation system was effective for organic rice productivity. It could be useful for organic farmer to apply the organic materials use recommendation system for rice.