Browse > Article
http://dx.doi.org/10.11001/jksww.2020.34.5.345

Trends of microbial electrochemical technologies for nitrogen removal in wastewater treatment  

Chai, Hyungwon (Department of Environment and Energy Engineering, Chonnam National University)
Choi, Yonghoon (Department of Electrical Engineering, Chonnam National University)
Kim, Myeongwoon (Department of Energy and Environmental Engineering, Daejin University)
Kim, Youngjin (Graduate School of Consulting, Kumoh National Institute of Technology)
Jung, Sokhee P. (Department of Environment and Energy Engineering, Chonnam National University)
Publication Information
Journal of Korean Society of Water and Wastewater / v.34, no.5, 2020 , pp. 345-356 More about this Journal
Abstract
The removal of organic carbon and nutrients (i.e. N and P) from wastewater is essential for the protection of the water environment. Especially, nitrogen compounds cause eutrophication in the water environment, resulting in bad water quality. Conventional nitrogen removal systems require high aeration costs and additional organic carbon. Microbial electrochemical system (MES) is a sustainable environmental system that treats wastewater and produces energy or valuable chemicals by using microbial electrochemical reaction. Innovative and cost-effective nitrogen removal is feasible by using MESs and increasing attention has been given to the MES development. In this review, recent trends of MESs for nitrogen removal and their mechanism were conclusively reviewed and future research outlooks were also introduced.
Keywords
Electroactive bacteria; Electrostatic field; Microbial electrochemical technology; Nitrogen removal; Wastewater treatment;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Kamel, M.S., Abd-Alla, M.H., Abdul-Raouf, U.M., Kamel, M.S., Abd-Alla, M. H. and Abdul-Raouf, U.M. (2019). Characterization of anodic biofilm bacterial communities and performance evaluation of a mediator-free microbial fuel cell, Environ. Eng. Res., 25(6), 862-870.   DOI
2 Kang, H., Jeong, J., Gupta, P. L. and Jung, S.P. (2017). Effects of brush-anode configurations on performance and electrochemistry of microbial fuel cells, Int. J. Hydrog. Energy, 42(45), 27693-27700.   DOI
3 Kartal, B., Van Niftrik, L., Sliekers, O., Schmid, M.C., Schmidt, I., Van De Pas-Schoonen, K., Cirpus, I., Van der Star, W., Van Loosdrecht, M. and Abma, W. (2004). Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria, Rev. Environ. Sci. Biotechnol., 3(3), 255-264.   DOI
4 Kashima, H. and Regan, J.M. (2015). Facultative nitrate reduction by electrode-respiring Geobacter metallireducens biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system, Environ. Sci. Technol., 49(5), 3195-3202.   DOI
5 Kim, I.S., Chae, K.J., Choi, M.J. and Verstraete, W. (2008). Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation, Environ. Eng. Res., 13(2), 51-65.   DOI
6 Kim, T., Kang, S., Chang, I.S., Kim, H.W., Sung, J.H., Paek, Y., Kim, Y.H. and Jang, J.K. (2017). Prevention of power overshoot and reduction of cathodic overpotential by increasing cathode flow rate in microbial fuel cells used stainless steel scrubber electrode, J. Korean Soc. Environ. Eng., 39(10), 591-598.   DOI
7 Jung, S.P., Kim, E. and Koo, B. (2018). Effects of wire-type and mesh-type anode current collectors on performance and electrochemistry of microbial fuel cells, Chemosphere, 209, 542-550.   DOI
8 Koo, B., Lee, S.M., Oh, S.E., Kim, E.J., Hwang, Y., Seo, D., Kim, J.Y., Kahng, Y.H., Lee, Y.W. and Chung, S.Y. (2019). Addition of reduced graphene oxide to an activated-carbon cathode increases electrical power generation of a microbial fuel cell by enhancing cathodic performance, Electrochim. Acta, 297, 613-622.   DOI
9 Kuenen, J.G. (2008). Anammox bacteria: from discovery to application, Nat. Rev. Microbiol., 6(4), 320.   DOI
10 Kuntke, P., Sleutels, T.H.J.A., Saakes, M. and Buisman, C.J.N. (2014). Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell, Int. J. Hydrogen Energy, 39(10), 4771-4778.   DOI
11 Lee, K.Y., Choi, I.K., Lim, K.H., Lee, K.Y., Choi, I.K. and Lim, K.H. (2018). Nitrogen removal and electrochemical characteristics depending on separators of two-chamber microbial fuel cells, Environ. Eng. Res., 24(3), 443-448.   DOI
12 Nam, J.Y., Kim, H.W., Lim, K.H. and Shin, H.S. (2010). Electricity generation from MFCs using differently grown anode-attached bacteria, Environ. Eng. Res., 15(2), 71-78.   DOI
13 Nam, J.Y., Moon, C., Jeong, E., Lee, W.T., Shin, H.S., Kim, H.W., Nam, J.Y., Moon, C., Jeong, E. and Lee, W.T. (2013). Optimal metal dose of alternative cathode catalyst considering organic substances in single chamber microbial fuel cells, Environ. Eng. Res., 18(3), 145-150.   DOI
14 Nam, T., Kang, H., Pandit, S., Kim, S.H., Yoon, S., Bae, S. and Jung, S.P. (2020). Effects of vertical and horizontal configurations of different numbers of brush anodes on performance and electrochemistry of microbial fuel cells, J. Clean. Prod., 124125.   DOI
15 Qiao, S., Yin, X., Zhou, J. and Furukawa, K. (2014). Inhibition and recovery of continuous electric field application on the activity of anammox biomass, Biodegradation, 25(4), 505-513.   DOI
16 Nam, T., Son, S., Kim, E., Tran, H.V.H., Koo, B., Chai, H., Kim, J., Pandit, S., Gurung, A. and Oh, S.E. (2018). Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance, Environ. Eng. Res., 23(4), 383-389.   DOI
17 Nam, T., Son, S., Koo, B., Tran, H.V.H., Kim, J.R., Choi, Y. and Jung, S.P. (2017). Comparative evaluation of performance and electrochemistry of microbial fuel cells with different anode structures and materials, Int. J. Hydrog. Energy, 42(45), 27677-27684.   DOI
18 Pawar, A.A., Karthic, A., Pandit, S. and Jung, S.P. (2020). Electromethanogenesis using microbial electrolysis cells: Materials.
19 Puig, S., Coma, M., Desloover, J., Boon, N., Colprim, J. and Balaguer, M.D. (2012). Autotrophic denitrification in microbial fuel cells treating low ionic strength waters, Environ. Sci. Technol., 46(4), 2309-2315.   DOI
20 Puig, S., Serra, M., Vilar-Sanz, A., Cabre, M., Baneras, L., Colprim, J. and Balaguer, M.D. (2011). Autotrophic nitrite removal in the cathode of microbial fuel cells, Bioresour. Technol., 102(6), 4462-4467.   DOI
21 Rittmanand McCarty. (2001). E dan McCarty. 2001. Environmental Biotechnology: Principle and Apllications. In: McGraw Hill International Ed., New York.
22 Savla, N., Pandit, S., Khanna, N., Mathuriya, A.S. and Jung, S.P. (2020). Microbially powered electrochemical systems coupled with membrane-based technology for sustainable desalination and efficient wastewater treatment, Environ. Eng. Res., 42(7), 360-380.
23 Villano, M., Scardala, S., Aulenta, F. and Majone, M. (2013). Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell, Bioresour. Technol., 130, 366-371.   DOI
24 Schroder, U., Harnisch, F. and Angenent, L.T. (2015). Microbial electrochemistry and technology: terminology and classification, Energy Environ. Sci., 8(2), 513-519.   DOI
25 Shin, W., Park, J., Lee, B., Kim, Y. and Jun, H. (2017). Evaluation of biogas production rate by using various electrodes materials in a combined anaerobic digester and microbial electrochemical technology (MET), J. Korean Soc. Environ. Eng., 39(2), 82-88.   DOI
26 Song, Y.C., Joicy, A. and Jang, S.H. (2019). Direct interspecies electron transfer in bulk solution significantly contributes to bioelectrochemical nitrogen removal, Int. J. Hydrog. Energy, 44(4), 2180-2190.   DOI
27 Tran, H.V., Kim, E., Koo, B., Sung, S. and Jung, S.P. (2020). Anode maturation time for attaining a mature anode biofilm and stable cell performance in a single chamber microbial fuel cell with a brush anode, Preprint.
28 Vilajeliu-Pons, A., Koch, C., Balaguer, M. D., Colprim, J., Harnisch, F. and Puig, S. (2018). Microbial electricity driven anoxic ammonium removal, Water Res., 130, 168-175.   DOI
29 Virdis, B., Rabaey, K., Rozendal, R.A., Yuan, Z. and Keller, J. (2010). Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells, Water Res., 44(9), 2970-2980.   DOI
30 Wang, D., Han, H., Han, Y., Li, K. and Zhu, H. (2017). Enhanced treatment of Fischer-Tropsch (FT) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system: effect of electric field, Bioresour. Technol., 232, 18-26.   DOI
31 Wang, Z. and Lim, B. (2020). Electric power generation from sediment microbial fuel cells with graphite rod array anode, Environ. Eng. Res., 25(2), 238-242.   DOI
32 Yin, X., Qiao, S. and Zhou, J. (2016). Effects of cycle duration of an external electrostatic field on anammox biomass activity, Sci. Rep., 6, 19568.   DOI
33 Wang, Z.J., Lim, B.S., Wang, Z.J. and Lim, B.S. (2016). Electric power generation from treatment of food waste leachate using microbial fuel cell, Environ. Eng. Res., 22(2), 157-161.   DOI
34 Snoeyink, V.L., Jenkins, D. and Jenkins, D. (1980). Water chemistry. Wiley New York, 91.
35 Wu, Y.C., Wu, H.J., Fu, H.Y., Dai, Z. and Wang, Z.J. (2019). Burial depth of anode affected the bacterial community structure of sediment microbial fuel cells, Environ. Eng. Res., 25(6), 870-876.
36 Yan, H., Saito, T. and Regan, J.M. (2012). Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode, Water Res., 46(7), 2215-2224.   DOI
37 Yang, Y., Li, X., Yang, X. and He, Z. (2017). Enhanced nitrogen removal by membrane-aerated nitritation-anammox in a bioelectrochemical system, Bioresour. Technol., 238, 22-29.   DOI
38 Yoon, H.S., Song, Y.C. and Choi, T.S. (2015). Improvement of anodic performance by using CTP binder containg nickel, J. Korean Soc. Environ. Eng., 37(9), 499-504.   DOI
39 Yu, Q., Xiong, W., Huang, D., Luo, C., Yang, Q., Guo, T., Wei, Q., Yu, Q., Xiong, W. and Huang, D. (2019). Cathodic reduction characteristics of 2-chloro-4-nitrophenol in microbial electrolysis cell, Environ. Eng. Res., 25(6), 854-861.   DOI
40 Zamora, P., Georgieva, T., Ter Heijne, A., Sleutels, T.H.J.A., Jeremiasse, A.W., Saakes, M., Buisman, C.J. N. and Kuntke, P. (2017). Ammonia recovery from urine in a scaled-up Microbial Electrolysis Cell, J. Power Sources, 356, 491-499.   DOI
41 Chai, H., Koo, B., Son, S. and Jung, S.P. (2020). Validity and Reproducibility of Various Linear Sweep Voltammetry Tests of Anode and Cathode Electrodes in Microbial Electrolysis Cells.
42 Zhan, G., Zhang, L., Li, D., Su, W., Tao, Y. and Qian, J. (2012). Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell, Bioresour. Technol., 116, 271-277.   DOI
43 Zhan, G., Zhang, L., Tao, Y., Wang, Y., Zhu, X. and Li, D. (2014). Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems, Electrochim. Acta, 135, 345-350.   DOI
44 Zhang, F. and He, Z. (2012). Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell, Process Biochem., 47(12), 2146-2151.   DOI
45 Zhang, X., Zhu, F., Chen, L., Zhao, Q. and Tao, G. (2013). Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell, Bioresour. Technol., 146, 161-168.   DOI
46 Zhu, T., Zhang, Y., Bu, G., Quan, X. and Liu, Y. (2016). Producing nitrite from anodic ammonia oxidation to accelerate anammox in a bioelectrochemical system with a given anode potential, Chem. Eng. J., 291, 184-191.   DOI
47 Brown, R.K., Harnisch, F., Wirth, S., Wahlandt, H., Dockhorn, T., Dichtl, N. and Schroder, U. (2014). Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell, Bioresour. Technol., 163, 206-213.   DOI
48 Campecino, J., Lagishetty, S., Wawrzak, Z., Alfaro, V. S., Lehnert, N., Reguera, G., Hu, J. and Hegg, E.L. (2020). Cytochrome c nitrite reductase from the bacterium Geobacter lovleyi represents a new NrfA subclass, J. Biol. Chem., jbc, RA120, 013981.
49 Choi, T.S., Song, Y.C. and Joicy, A. (2018). Influence of conductive material on the bioelectrochemical removal of organic matter and nitrogen from low strength wastewater, Bioresour. Technol., 259, 407-413.   DOI
50 Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D., Cornell, S., Dentener, F., Galloway, J. and Ganeshram, R.S. (2008). Impacts of atmospheric anthropogenic nitrogen on the open ocean, science, 320(5878), 893-897.   DOI
51 Eaktasang, N., Kang, C.S., Ryu, S.J., Suma, Y. and Kim, H.S. (2013). Enhanced current production by electroactive biofilm of sulfate-reducing bacteria in the microbial fuel cell, Environ. Eng. Res., 18(4), 277-281.   DOI
52 Feng, Q., Song, Y. C., Li, J., Wang, Z. and Wu, Q. (2020). Influence of electrostatic field and conductive material on the direct interspecies electron transfer for methane production, Environ. Res., 109867.   DOI
53 Gregory, K.B., Bond, D.R. and Lovley, D.R. (2004). Graphite electrodes as electron donors for anaerobic respiration, Environ. Microbiol., 6(6), 596-604.   DOI
54 Jetten, M.S., Niftrik, L.V., Strous, M., Kartal, B., Keltjens, J.T. and Op den Camp, H. J. (2009). Biochemistry and molecular biology of anammox bacteria, Crit. Rev. Biochem. Mol. Biol., 44(2-3), 65-84.   DOI
55 Haque, N., Cho, D. and Kwon, S. (2014). Performances of metallic (sole, composite) and non-metallic anodes to harness power in sediment microbial fuel cells, Environ. Eng. Res., 19(4), 363-367.   DOI
56 Hassan, M., Zhu, G., LU, Y.Z., AL-Falahi, A.H., LU, Y., Huang, S. and Wan, Z. (2020). Removal of antibiotics from wastewater and its problematic effects on microbial communities by bioelectrochemical Technology: Current knowledge and future perspectives, Environ. Eng. Res., 26(1), 190405.
57 Jang, J.K., Kim, K.M., Byun, S., Ryou, Y.S., Chang, I.S., Kang, Y. K. and Kim, Y.H. (2014). Current generation from microbial fuel cell using stainless steel wire as anode electrode, J. Korean Soc. Environ. Eng., 36(11), 753-757.   DOI
58 Joicy, A., Song, Y.C., Yu, H. and Chae, K.J. (2019). Nitrite and nitrate as electron acceptors for bioelectrochemical ammonium oxidation under electrostatic field, J. Environ. Manag., 250, 109517.   DOI
59 Jung, S., Mench, M.M. and Regan, J.M. (2011). Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH, Environ. Sci. Technol., 45(20), 9069-9074.   DOI
60 Jung, S. and Regan, J.M. (2007). Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors, Appl. Microbiol. Biotechnol., 77(2), 393-402.   DOI