• Title/Summary/Keyword: organic molecules

Search Result 529, Processing Time 0.025 seconds

A First Synthesis and Physical Properties of Asymmetric Anthracenes-Thiophenes Bridged with Ethylene

  • Hwang, Min Ji;Park, Ji Hee;Jeong, Eun Bin;Kang, Il;Lee, Dong Hoon;Park, Chan Eon;Singh, O.M.;Choi, HoJune;Kim, Yoon-Hi;Yoon, Yong Jin;Kwon, Soon-Ki;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3810-3816
    • /
    • 2012
  • Here we report our recent result of a new semiconductor material, which has an asymmetric structure. The synthesized molecules consist of anthracene and thiophene connected by bridged ethylene and substituted with hexyl or dodecyl groups as pendants. The semiconductors were synthesized using a McMurry coupling reaction between anthracene-2-carbaldehyde and corresponding 5-hexyl(or dodecyl)thiophene-2-carbaldehyde. A first investigation of synthesized asymmetry AVHT (9a) and AVDT (9b) for the physical properties showed that they have high oxidation potential and thermal stability. The devices prepared by using AVHT (9a) and AVDT (9b) showed the mobility of $2.6{\times}10^{-2}cm^2/Vs$ and $4.4{\times}10^{-3}cm^2/Vs$, respectively, in solution processed OTFTs.

Evaluation of Effective MMP Inhibitors from Eight Different Brown Algae in Human Fibrosarcoma HT1080 Cells

  • Bae, Min Joo;Karadeniz, Fatih;Ahn, Byul-Nim;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.153-161
    • /
    • 2015
  • Matrix metalloproteinases (MMPs) are crucial extracellular matrices degrading enzymes that have important roles in metastasis of cancer progression as well as other significant conditions such as oxidative stress and hepatic fibrosis. Marine plants are on the rise for their potential to provide natural products that exhibit remarkable health benefits. In this context, brown algae species have been of much interest in the pharmaceutical field with reported instances of isolation of bioactive compounds against tumor growth and MMP activity. In this study, eight different brown algae species were harvested, and their extracts were compared in regard to their anti-MMP effects. According to gelatin zymography results, Ecklonia cava, Ecklonia bicyclis, and Ishige okamurae showed higher inhibitory effects than the other samples on MMP-2 and -9 activity at the concentrations of 10, 50, and $100{\mu}g/mL$. However, only I. okamurae was able to regulate the MMP activity through the expression of MMP and tissue inhibitor of MMP observed by mRNA levels. Overall, brown algae species showed to be good sources for anti-MMP agents, while I. okamurae needs to be further studied for its potential to yield pharmaceutical molecules that can regulate MMP-activity through cellular pathways as well as enzymatic inhibition.

Comparative Study of Tetrahydrothiophene and Thiophene Self Assembled Monolayers on Au(111): Structure and Molecular Orientation

  • Ito, Eisuke;Hara, Masahiko;Kanai, Kaname;Ouchi, Yukio;Seki, Kazuhiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1755-1759
    • /
    • 2009
  • Surface structure and molecular orientation of self-assembled monolayers (SAMs) formed by the spontaneous adsorption of tetrahydrothiophene (THT) and thiophene (TP) on Au(111) were investigated by means of scanning tunneling microscopy (STM) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy. STM imaging revealed that THT SAMs have a commensurate (3 ${\times}\;2\sqrt[]{3}$) structure containing structural defects in ordered domains, whereas TP SAMs are composed of randomly adsorbed domains and paired molecular row domains that can be described as an incommensurate packing structure. The NEXAFS spectroscopy study showed that the average tilt angle of the aliphatic THT ring and $\pi$-conjugated TP ring in the SAMs were calculated to be about $30^o\;and\;40^o$, respectively, from the surface normal. It was also observed that the $\pi$* transition peak in the NEXAFS spectrum of the TP SAMs is very weak, suggesting that a strong interaction between $\pi$-electrons and the Au surface arises during the self-assembly of TP molecules. In this study, we have clearly demonstrated that the surface structure and adsorption orientation of organic SAMs on Au(111) are strongly influenced by whether the cyclic ring is saturated or unsaturated.

Synthesis and characterization of poly(vinyl-alcohol)-poly(β-cyclodextrin) copolymer membranes for aniline extraction

  • Oughlis-Hammache, F.;Skiba, M.;Hallouard, F.;Moulahcene, L.;Kebiche-Senhadji, O.;Benamor, M.;Lahiani-Skiba, M.
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.223-240
    • /
    • 2016
  • In this study, poly(vinyl-alcohol) and water insoluble ${\beta}$-cyclodextrin polymer (${\beta}$-CDP) cross-linked with citric acid, have been used as macrocyclic carrier in the preparation of polymer inclusion membranes (PIMs) for aniline (as molecule model) extraction from aqueous media. The obtained membranes were firstly characterized by X-ray diffraction, Fourier transform infrared and water swelling test. The transport of aniline was studied in a two-compartment transport cell under various experimental conditions, such as carrier content in the membranes, stirring rate and initial aniline concentration. The kinetic study was performed and the kinetic parameters were calculated as rate constant (k), permeability coefficient (P) and flux (J). These first results demonstrated the utility of such polymeric membranes for environmental decontamination of toxic organic molecules like aniline. Predictive modeling of transport flux through these materials was then studied using design of experiments; the design chosen was a two level full factorial design $2^k$. An empirical correlation between aniline transport flux and independent variables (Poly ${\beta}$-CD membrane content, agitation speed and initial aniline concentration) was successfully obtained. Statistical analysis showed that initial aniline concentration of the solution was the most important parameter in the study domain. The model revealed the existence of a strong interaction between the Poly ${\beta}$-CD membrane content and the stirring speed of the source solution. The good agreement between the model and the experimental transport data confirms the model's validity.

Sonocatalytic Degradation of Rhodamine B in the Presence of TiO2 Nanoparticles by Loading WO3

  • Meng, Ze-Da;Sarkar, Sourav;Zhu, Lei;Ullah, Kefayat;Ye, Shu;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.6-12
    • /
    • 2014
  • In the present work, $WO_3$ and $WO_3-TiO_2$ were prepared by the chemical deposition method. Structural variations, surface state and elemental compositions were investigated for preparation of $WO_3-TiO_2$ sonocatalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) were employed for characterization of these new photocatalysts. A rhodamine B (Rh.B) solution under ultrasonic irradiation was used to determine the catalytic activity. Excellent catalytic degradation of an Rh.B solution was observed using the $WO_3-TiO_2$ composites under ultrasonic irradiation. Sonocatalytic degradation is a novel technology of treating wastewater. During the ultrasonic treatment of aqueous solutions sonoluminescence, cavitaties and "hot spot" occurred, leading to the dissociation of water molecules. In case of a $WO_3$ coupled system, a semiconductor coupled with two components has a beneficial role in improving charge separation and enhancing $TiO_2$ response to ultrasonic radiations. In case of the addition of $WO_3$ as new matter, the excited electrons from the $WO_3$ particles are quickly transferred to $TiO_2$ particle, as the conduction band of $WO_3$ is 0.74 eV which is -0.5 eV more than that of $TiO_2$. This transfer of charge should enhance the oxidation of the adsorbed organic substrate. The result shows that the photocatalytic performance of $TiO_2$ nanoparticles was improved by loading $WO_3$.

Optical properties of $Nd^{3+}$ complexes for liquid laser material (액체 레이저의 매질 개발을 목적으로 한 $Nd^{3+}$ 착물의 광학적 특성)

  • 김정호
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.318-322
    • /
    • 1999
  • Perdeuterated hexaflouroacetylacetonato-neodymium [$Nd(HFA-D)_3$] complexes were synthesized by the keto-enol tautomerism reaction of $Nd(HFA-D)_3$ in methanol-d$_4$ in order to reduce the radiationless transition to the ligands. The emission properties of $Nd(HFA-D)_3$ complex were measured in the following anhydrous deuterated organic solvents; $Methanol-d_4$, $Aceton-d_6$, $THE-d_8$ and $DMSO-d_6$, and these properties depended on the coordination ability of solvent molecules. The intensity and lifetime of the emission in dimethysulfoxide (DMSO-$d_6$) were superior to those in other in other deuterated solvents. It was suggested that the anhydrous $DMSO-d_6$might be the most appropriate solvent for the liquid laser material of $Nd(HFA-D)_3$ complex.

  • PDF

Characteristic Analysis of Vertical Alignment by Ion-beam Irradiation Angle and Energy Density (이온빔 조사 각도와 에너지강도에 의한 수직 배향막의 특성 분석)

  • Kang, Dong-Hun;Oh, Byeong-Yun;Kim, Byoung-Yong;Han, Jin-Woo;Kim, Young-Hwan;Ok, Chul-Ho;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.398-398
    • /
    • 2007
  • The Liquid Crystal (LC) alignment uniformity is very important in LC devices. The alignment mechanism of LC molecules on a rubbed polyimide (PI) surface is very important for both LC fundamental research and application. So, Generally a rubbing method to align LC has been widely used to mass-produce LCD panels. But because rubbing method is contact method between rubbing fabric and indium-tin-oxide glass or flexible substrate, rubbing method has some defects, such as the electrode charges and the creation of contaminating particles. Thus we strongly recommend a non-contact alignment technique for getting rid of some defects of rubbing method. Most recently, the LC aligning capabilities achieved by ion-beam exposure on the organic and nonorganic thin film surface have been reported successfully. In this research, we studied the tilt angle generation and electro-optical performances for a NLC on homeotropic polyimide surfaces with ion-beam exposure. The LC aligning capabilities of a nematic liquid crystal (NLC) on a homeotropic PI surface using a new ion-beam method were studied. On the homeotropic PI surface, the tilt angle of the NLC by exposure ion-beam had a tendency to decrease as increased ion-beam energy density. And, on the homeotropic PI surface, the alignment character of the NLC with respect to ion-beam energy was good. And we achieved satisfactory result for EO character.

  • PDF

Synthesis and Optical Properties of TiO2/TiOF2 Composite Powder with Controlled Phase Fractions via an Ultrasonic Spray Pyrolysis Process (초음파 분무 열분해 공정을 이용한 TiO2와 TiOF2 복합체 분말의 합성과 상 분율에 따른 광학적 성질)

  • Hwangbo, Young;Park, Woo-Young;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.325-330
    • /
    • 2017
  • Photoelectron-hole separation efficiency plays an important role in the enhancement of the photocatalytic activity of photocatalysts towards the degradation of organic molecules. In this study, $TiO_2/TiOF_2$ heterostructured composite powders with suitable band structures, which structures are able to separate photoelectron-hole pairs, have been synthesized using a simple and versatile ultrasonic spray pyrolysis process. In addition, their phase volume fractions have been controlled by varying the pyrolysis temperature from $400^{\circ}C$ to $800^{\circ}C$. The structural and optical properties of the synthesized powders have been characterized by X-ray diffraction, scanning electronic microscopy and UV-vis spectroscopy. The powder with a phase volume ratio close to 1, compared with single $TiOF_2$ and other composite powders with different phase volume fractions, was found to have superior photocatalytic activity for the degradation of rhodamine B. This result shows that the $TiO_2/TiOF_2$ heterostructure promotes the separation of the photoinduced electrons and holes and that this powder can be applicable to environmental cleaning applications.

CdSe Nanocrystal Quantum Dots Based Hybrid Heterojunction Solar Cell

  • Jeong, So-Myung;Eom, S.;Park, H.;Lee, Soo-Hyoung;Han, Chang-Soo;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.93-93
    • /
    • 2010
  • Semiconductor nanocrystal quantum dots (NQDs) have recently attracted considerable interest for use in photovoltaics. Band gaps of NQDs can be tuned over a considerable range by varying the particle size thereby allowing enhance absorption of solar spectrum. NQDs, synthesized using colloidal routes, are solution processable and promise for a large-area fabrication. Recent advancements in multiple-exciton generation in NQD solutions have afforded possible efficiency improvements. Various architectures have attempted to utilize the NQDs in photovoltaics, such as NQD-sensitized solar cell, NQD-bulk-heterojuction solar cell and etc. Here we have fabricated CdSe NQDs with the band gap of 1.8 eV to 2.1 eV on thin-layers of p-type organic crystallites (1.61 eV) to realize a donor-acceptor type heterojuction solar cell. Simple structure as it was, we could control the interface of electrode-p-layer, and n-p-layer and monitor the following efficiency changes. Specifically, surface molecules adsorbed on the NQDs were critical to enhance the carrier transfer among the n-layer where we could verify by measuring the photo-response from the NQD layers only. Further modifying the annealing temperature after the deposition of NQDs on p-layers allowed higher conversion efficiencies in the device.

  • PDF

New Evaluation of Initial Growth Mechanisms of Hydroxyapatite on Self-assembled Collagen Nanofibrils by Using ToF-SIMS and AFM Techniques

  • Park, Young-Jae;Choi, Gyu-Jin;Lee, Tae-Geol;Lee, Won-Jong;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.397-397
    • /
    • 2010
  • Bone is considered as hierarchically organized biocomposites of organic (collagen) and inorganic (hydroxyapatite) materials. The precise structural dependence between hydroxyapatite (HAp, $Ca_{10}(PO_4)_6(OH)_2)$ crystals and collagen fibril is critical to unique characteristics of bone. To meet those conditions and obtain optimal properties, it is essential to understand and control the initial growth mechanisms of hydroxyapatite at the molecular level, such as other nano-structured materials. In this study, collagen fibrils were prepared by adsorbing native type I collagen molecules onto hydrophobic surface. Hydrophobicity was introduced on the Si wafer surface by using PECVD (plasma enhanced chemical vapor deposition) method and cyclohexane as a precursor. Biomimetic nucleation and growth of HAp on the self-assembled collagen nanofibrils were occurred through incubation of the sample in SBF (simulated body fluid). Chemical and morphological evolution of HAp nanocrystals was investigated by surface-sensitive analytical techniques such as ToF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) and AFM (Atomic Force Microscopy) in the early growth stages (< 24 hrs). The very initial stages (< 12 hrs) of mineralization could be clearly demonstrated by ToF-SIMS chemical mapping of surface. In addition to ToF-SIMS and AFM measurement, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis were conducted to characterize the HAp layer in the late stages. This study is of great importance in the growth of real bone-like materials with a structure analogous to that of natural bones and the development of biomimetic nanomaterials.

  • PDF