Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.1.6

Sonocatalytic Degradation of Rhodamine B in the Presence of TiO2 Nanoparticles by Loading WO3  

Meng, Ze-Da (Jiangsu Key Laboratory of Environmental Functional Materials, College of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Sarkar, Sourav (Department of Advanced Materials Science & Engineering, Hanseo University)
Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University)
Ullah, Kefayat (Department of Advanced Materials Science & Engineering, Hanseo University)
Ye, Shu (Department of Advanced Materials Science & Engineering, Hanseo University)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.24, no.1, 2014 , pp. 6-12 More about this Journal
Abstract
In the present work, $WO_3$ and $WO_3-TiO_2$ were prepared by the chemical deposition method. Structural variations, surface state and elemental compositions were investigated for preparation of $WO_3-TiO_2$ sonocatalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) were employed for characterization of these new photocatalysts. A rhodamine B (Rh.B) solution under ultrasonic irradiation was used to determine the catalytic activity. Excellent catalytic degradation of an Rh.B solution was observed using the $WO_3-TiO_2$ composites under ultrasonic irradiation. Sonocatalytic degradation is a novel technology of treating wastewater. During the ultrasonic treatment of aqueous solutions sonoluminescence, cavitaties and "hot spot" occurred, leading to the dissociation of water molecules. In case of a $WO_3$ coupled system, a semiconductor coupled with two components has a beneficial role in improving charge separation and enhancing $TiO_2$ response to ultrasonic radiations. In case of the addition of $WO_3$ as new matter, the excited electrons from the $WO_3$ particles are quickly transferred to $TiO_2$ particle, as the conduction band of $WO_3$ is 0.74 eV which is -0.5 eV more than that of $TiO_2$. This transfer of charge should enhance the oxidation of the adsorbed organic substrate. The result shows that the photocatalytic performance of $TiO_2$ nanoparticles was improved by loading $WO_3$.
Keywords
$WO_3$; ultrasonic; TEM; sonocatalyst; UV-Vis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Somasundaram, N. Tacconi, C. R. Chenthamarakshan and K. Rajeshwar, J. Electroanal. Chem., 57(2), 167 (2005).
2 Z. D. Meng, L. Zhu, J. G. Choi, C. Y. Park and W. C. Oh, Nanoscale. Res. Let., 6, 459 (2011).   DOI   ScienceOn
3 J. Wang, W, Sun, Z. H. Zhang, Z. Q. Xing, R. Xu, R. H Li, Y. Li and X. D. Zhang, Ultrason. Sonochem., 15(4), 301 (2008).   DOI   ScienceOn
4 M. Kubo, K. Matsuoka, A. Takahashi, N. Shibasaki-Kitakawa and T. Yonemoto, Ultrason. Sonochem., 12(4), 263 (2005).   DOI   ScienceOn
5 D. Ke, H. Liu, T. Peng, X. Liu and K. Dai, Mater. Lett., 62, 447 (2008).   DOI   ScienceOn
6 X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43(8), 1700 (2005).   DOI   ScienceOn
7 S. F. Chen, L. Chen, S. Gao, and G. Y. Cao, Pow. Technol., 160, 198 (2005).   DOI   ScienceOn
8 H. Liu, X. N. Dong, X. C. Wang, C. C. Sun, J. Q. Li and Z. F. Zhu, Chem. Eng. J., 230(1-3), 279 (2013)   DOI   ScienceOn
9 P. Xu, T. Xu, J. Lu, S. M. Gao, N. S. Hosmane, B. B. Huang, Y. Dai and Y. B. Wang, Energy Environ. Sci.. 3(8), 1128 (2010).   DOI   ScienceOn
10 S. Bagwasi, B. Z. Tian, J. L. Zhang, M. Nasir, Chem. Eng. J., 217(5), 108 (2013).   DOI   ScienceOn
11 P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, G. Ding, Inter.J. Hydr. Ener., 37(3), 2224 (2012).   DOI   ScienceOn
12 R. A. Carcel, L. Andronic, A. Duta, J. Nanosci. Nanotechnol., 11(10), 9095 (2011).   DOI
13 Y. Segura, R. Molina, F. Martinez and J. A. Melero, Ultrason. Sonochem., 16(3), 417 (2009).   DOI   ScienceOn
14 M. H. Entezari and Z. Sharif Al-Hoseini, Ultrason. Sonochem., 14(5), 599 (2007).   DOI   ScienceOn
15 J. Saien, H. Delavari and A. R. Solymani, J. Hazar. Mate., 177(1-3), 1031 (2010).   DOI   ScienceOn
16 J. Wang, Z. Jiang, L.Q. Zhang, P. L. Kang, Y. P. Xie, Y. H. Lv, R. Xu and X. D. Zhang, Ultrason. Sonochem., 16(2), 225 (2009).   DOI   ScienceOn
17 Tryba B, Piszcz M, Morawski AW. Int. J. Photoenergy., 01, 15 (2009).
18 B. L. Abrams, J. P. Wilcoxon, Crit. Rev. Solid. State. Mater. Sci., 30(3), 153 (2005).   DOI   ScienceOn
19 C. Burda, Y. Lou, X. Chen, A. Samia and J. Stout, J. Gole, Nano Lett., 3(8), 1049 (2003).   DOI   ScienceOn
20 X. Chen and S.S. Mao, Chem. Rev., 107(7), 2891 (2007).   DOI   ScienceOn
21 K. K. Akurati, A. Vital, J. P. Dellemann, K. Mitchalow and T. Graule, Appl. Catal. B, 79, 53 (2008).   DOI   ScienceOn
22 O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal. B: Environ., 98(1-2), 27 (2010).   DOI   ScienceOn
23 N. Wang, L. H. Zhu, M. Q. Wang, D. L. Wang and H. Q. Tang, Ultrason. Sonochem., 17(1), 78 (2010).   DOI   ScienceOn
24 L. M. Bertus, R. A. Carcel and A. Duta, Environ. Eng. Manage. J., 17(10), 1021 (2011).