Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.6.325

Synthesis and Optical Properties of TiO2/TiOF2 Composite Powder with Controlled Phase Fractions via an Ultrasonic Spray Pyrolysis Process  

Hwangbo, Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Park, Woo-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.27, no.6, 2017 , pp. 325-330 More about this Journal
Abstract
Photoelectron-hole separation efficiency plays an important role in the enhancement of the photocatalytic activity of photocatalysts towards the degradation of organic molecules. In this study, $TiO_2/TiOF_2$ heterostructured composite powders with suitable band structures, which structures are able to separate photoelectron-hole pairs, have been synthesized using a simple and versatile ultrasonic spray pyrolysis process. In addition, their phase volume fractions have been controlled by varying the pyrolysis temperature from $400^{\circ}C$ to $800^{\circ}C$. The structural and optical properties of the synthesized powders have been characterized by X-ray diffraction, scanning electronic microscopy and UV-vis spectroscopy. The powder with a phase volume ratio close to 1, compared with single $TiOF_2$ and other composite powders with different phase volume fractions, was found to have superior photocatalytic activity for the degradation of rhodamine B. This result shows that the $TiO_2/TiOF_2$ heterostructure promotes the separation of the photoinduced electrons and holes and that this powder can be applicable to environmental cleaning applications.
Keywords
$TiO_2/TiOF_2$; heterostructures; composite; spray pyrolysis; photocatalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. V. Reddy, S. Madhavi, G. V. S. Rao and B. V. R. Chowdari, J. Power Sources, 162, 1312 (2006).   DOI
2 B. Li, D. Wang, Y. Wang, B. Zhu, Z. Gao, Q. Hao, Y. Wang and K. Tang, Electrochim. Acta, 180, 894 (2015).   DOI
3 M. He, Z. Wang, X. Yan, L. Tian, G. Liu and X. Chen, J. Power Sources, 306, 309 (2016).   DOI
4 A. B. Murphy: Sol. Energ. Mat. Sol. Cells, 91, 1326 (2007).   DOI
5 J. Wang, F. CaO, Z. Bian, M. K. H. Leung and H. Li, Nanoscale, 6, 897 (2014).   DOI
6 J. Zhu, D. Zhang, Z. Bian, G. Li, Y. Huo, Y. Lu and H. Li, Chem. Commun., 5394 (2009).
7 K. Vasanth Kumar, K. Porkodi and F. Rocha, Catal. Commun., 9, 82 (2008).   DOI
8 H. Huang, D. Li, Q. Lin, W. Zhang, Y. Shao, Y. Chen, M. Sun and X. Fu, Environ. Sci. Technol., 43, 4164 (2009).   DOI
9 Y. M. Lin, D. Z. Li, J. H. Hu, G. C. Xiao, J. X. Wang, W. J. Li and X. Z. Fu, J. Phys. Chem. C, 116, 5764 (2012).   DOI
10 M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).   DOI
11 C. Hyeok, J. K. Yong, S. V. Rajender and D. D. Dionysios, Chem. Mater., 18, 5377 (2006).   DOI
12 H. Melhem, P. Simon, L. Beouch, F. Goubard, M. Boucharef, C. D. Bin, Y. Leconte, B. Ratier, N. Herlin- Boime and J. Boucle, Adv. Energy Mater., 1, 908 (2011).   DOI
13 M. D. Hernandez-Alonso, F. Fresno, S. Suarez and J. M. Coronado, Energy Environ. Sci., 2, 1231 (2009).   DOI
14 K. Zhu, X. Liu, J. Du, J. Tian, Y. Wang, S. Liu and Z. Shan, J. Mater. Chem. A., 3, 6455 (2015).   DOI
15 H. Yang and X. Zhang, J. Mater. Chem., 19, 6907 (2009).   DOI
16 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, 269 (2001).   DOI
17 H. Irie, S. Miura, K. Kamiya and K. Hashimoto, Chem. Phys. Lett., 457, 202 (2008).   DOI
18 X. Zhang, L. Zhang, T. Xie and D. Wang, J. Phys. Chem. C, 113, 7371 (2009).   DOI