• Title/Summary/Keyword: organic modifier

Search Result 53, Processing Time 0.028 seconds

Dispersion Properties of Epoxy-layered Silicate Nanocomposites Using Homogenizer (균질기를 이용한 에폭시-층상 실리케이트 나노콤포지트 분산 특성)

  • Lee, Sang-Keuk;Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.126-133
    • /
    • 2013
  • This paper presents a study on the dispersion effect of the X-Ray diffraction, glass transition and DMA properties of organic modifier clay/epoxy nanocomposites produced in a homogenizer. Several experiments were conducted including different types of dispersion condition with varying processing conditions such as homogenizer rotor speed and applied time of homogenizer. The effects of these variables on the dispersion properties of nanocomposites were then studied. In order to fully understand the experimental results, a X-ray diffraction, DSC and DMA were used to investigate the effect of above mentioned variables on microstructure and intercalation/exfoliation of organic modifier clay/epoxy nanocomposites. The results from this work could be used to determine the best processing condition to obtain appropriate levels of d-spacing, glasss transition temperature and storage modulus in organic modifier clay/epoxy nanocomposites.

Synthesis of Thermally Stable Organosilicate for Exfoliated Poly(ethylene terephthalate) Nanocomposite with Superior Tensile Properties

  • Kim, Ki-Hong;Kim, Keon-Hyong;Huh, June;Jo, Won-Ho
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.178-184
    • /
    • 2007
  • A poly(ethylene terephthalate) (PET)/organosilicate nanocomposite, with enhanced mechanical properties, has been prepared using the melt intercalation method. For this purpose, a new organic modifier has been synthesized for the preparation of organosilicate, which is thermally stable and compatible with PET. The use of the new organosilicate yielded almost exfoliated PET nanocomposite; whereas, the PET nanocomposites prepared by use of commercial organoclays (Cloisite 15A and 30B) show only an intercalated morphology. Particularly, the use of the new organosilicate showed an enhanced tensile modulus, and without sacrifice of the tensile strength and elongation on breaking, while the use of commercial organoclays only exhibit a trade-off between those mechanical properties.

Application of Ionic Liquids as Mobile Phase Modifier in HPLC

  • Polyakova Yulia;Koo Yoon-Mo;Row Kyung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Ionic liquids are receiving an upsurge of interest as 'green' solvents; primarily as replacements for conventional media in chemical processes. Although ionic liquids are rather 'young' modifier, their great potential in high-performance liquids chromatography (HPLC) has already been demonstrated. This review presents an overview of the applications of ionic liquids as mobile phase modifiers in HPLC.

Effect of Organic Processing Parameters in Non-aqueous Tape-casting on Dispersion Stability of Barium Titanate-Borosilicate Glass Based Suspensions (비수계 테잎성형공정의 유기공정변수의 변화에 따른 티탄산바륨-붕규산염유리계 현탁액의 분산안정성)

  • Yeo, Jeong-Gu;Choi, Sung-Churl
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.725-731
    • /
    • 2003
  • The effect of organic processing parameters on the dispersion stability of the BaTiO$_3$-based dielectric particles and borosilicate glass particulate suspensions was investigated in a system where organic solvents, dispersant, binder and modifier were used as processing additives in a low temperature cofired ceramic fabrication processes. Two- and three-component organic solvents were used to disperse ceramic particles and it was found the better stability in the particulate suspension prepared in a bi-solvent, which was consists of toluene and ethanol in a non-azeotropic composition. The addition amount of organic additives had a great impact on dispersion in the present investigation. The flow curves of the suspensions prepared with binder and modifier were fitted according to the power-law equation, which indicates that the internal structure of the suspension could be disturbed under the applied shear stress. Finally, the LTCC green tapes were successfully tape-cast based upon the optimum formulation of LTCC suspension and its microstructure was compared with that of the hard-agglomerates.

New Retention Mechanism of Mononucleotides with Buffer Concentrations in Ion-suppressing RP-HPLC

  • Lee, Ju-Weon;Row, Kyung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.37-41
    • /
    • 2001
  • HPLC separation of ionic samples tends to be more complicated and difficult to understand than that of non-ionic compounds. On the other hand, band spacing is much more easily manipulated for ionic than for neutral samples. Ion-suppression RP-HPLC method was used with organic modifier and aqueous buffer solution. In this work, five mononucleotides of cytidine-5-monophosphate (5-CMP) disodium salt, uridine-5-monophosphate disodium salt (5-UMP), guanosine-5-monophosphate disodium salt (5-GMP), inosine-5-monophosphate disodium salt (5-IMP), and adenosine-5-monophosphate disodium salt (5-AMP) were examined. Acetic acid and sodium phosphate were used as buffers, and methanol as an organic modifier. A new relationship between the retention factor and the buffer concentration at a fixed modifier content (5% of methanol) could be expressed by following: K = (k(sub)-1 + k(sub)0 (k(sub)B/k(sub)S)/(1 + (k(sub)B/k(sub)S) C(sub)B(sup)a), where C(sub)B was the concentration of buffer. Using this relationship, the calculated values closely matched the experimental data. The derived relationship showed that as the buffer concentration increased, the retention factor approached a certain value, and this was buffer dependent.

  • PDF

Optimization of energy level alignment for efficient organic photovoltaics (에너지 준위 접합 최적화를 통한 유기태양전지 효율 향상법)

  • Lee, Hyunbok
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.12-16
    • /
    • 2015
  • Organic photovoltaics (OPVs) have attracted significant interest in an interdisciplinary research field for the decades as a next-generation photovoltaic device due to their unique advantages. One of requirements for OPVs having high power conversion efficiency is the favorable energy level alignment between the electrode/organic and organic/organic interfaces to manage the exciton dissociation and improve the charge transport. In this review, strategies to enhance the OPV performance by controlling the energy level alignment are discussed. The insertion of an exciton blocking layer leads to the efficient dissociation of photogenerated excitons at the donor/acceptor interface enhancing the short-circuit current density. The choice of a donor having a high ionization energy and an acceptor having a low electron affinity increases the open-circuit voltage. The insertion of an appropriate work function modifier which reduces the charge injection barrier removes the S-kink in current density-voltage characteristics of OPVs and improves the fill factor. This review would give a valuable guide to design the efficient OPV structure.

Accuracy and Precision according to Optimal Preparation by Analysis of Urine Lead (뇨중 연 분석의 정확성 및 정밀성에 미치는 최적 전처리법)

  • 장봉기;정은희;박종안;손부순;이종화
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.91-101
    • /
    • 2001
  • In order to propose a optimum method increasing accuracy and reproducibility in analysis of urine lead levels, we compared matrix modifier addition method and microwave digestion method. The results were as follows ; 1. Where the concentration of $Pd(NO_3)_2$(matrix modifier) was $50mg/{\ell}$, and ashing temperature was $900^{\circ}C$, the results were optimum. In case of matrix modifier addition method, the average coefficient of variation (CV) of normal man was 24.1%, and lead worker was 7.9%. The average urine lead levels of standard were $10.42\mu{g}/{\ell}$ and $19.89\mu{g}/{\ell}$ , the accuracies compared to reference values were 97.0% and 92.6%, respectively. 2. Microwave digestion temperature($160~180^{\circ}C$), time(15~25min) and the ratio of urine/ashing acid(1:1~4:1) did not significantly affect lead absorbance and background absorbance. Therefore we set up a optimum analytical conditions as follows: temperature, $160^{\circ}C$; time, 15min; the ratio of urine/ashing acid, 4:1. after samples were digested by the above analytical conditions, lead absorbance and background absorbance was measured at $450^{\circ}C$ as ashing temperature. The average coefficient of variation (CV) of normal man was 12.4%, and lead worker was 6.2%. The average urine lead levels of standard urine were $10.66\mu{g}/{\ell}$ and $23.31\mu{g}/{\ell}$, the accuracies compared to reference values were 99.3% and 103.9%, respectively. From the results, we suggest that microwave digestion method is a more favorable method than matrix modifier addition method because of easiness to reduce organic matter, possibility to analysis at low temperature and accuracy.

  • PDF

Flow Characteristics, Mechanical Properties and Chemical Resistance of Polycarbonate/Polybutylene Terephthalate/Impact Modifier Blends (Polycarbonate/polybutylene Terephthalate/Impact Modifier 블렌드의 유동특성, 기계적 성질 및 내화학성)

  • 류민영
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.237-244
    • /
    • 2002
  • Mechanical properties, flow characteristics and chemical resistance of polycarbonate (PC)/polybutylene terephthalate (PBT) /impact modifier (IM) blends were investigated over the various composition ranges of PC and PBT. Mechanical properties of the PC/PBT/IM blends for different IMs, butadiene based IM and butyl acrylate based IM, were studied for various compositions of the IMs. Impact strength at low temperature was also observed. For the study of chemical resistance of the PC/PBT/IM blends, the blonds were dipped in organic solvent, thinner, and then variations of mechanical properties were analyzed. Tensile and flexural strengths were increased linearly and heat distortion temperature (HDT) also increased as PC content in the blends increased. Impact strength increased drastically as PC content increased up to 50 wt% and stayed stable value. Flowability decreased as PC content increased. Impact strengths of the blend were various for different IMs. Butyl acrylate based IM showed slightly higher impact strength than butadiene based IM for the temperature above $0^{\circ}C$. However, butadiene based IM showed remarkably higher impact strength than butyl acrylate based IM for the temperature below $0^{\circ}C$. Through the experiment of chemical resistance it was observed that tensile and flexural strengths decreased, and impact strength increased as PC content in the blends increased. PC in the blend would become mild and ductile when it contacted with organic solvent. Thus the impact strength increased while tensile and flexural strength decreased.

Comparison and Estimation of Equilibrium Constants for Deoxyribonucleosides by Plate Theory and Moment Method (단이론과 모멘트방법을 이용한 데옥시리보뉴클레오사이드의 평형상수의 계산 및 비교)

  • Lee, Ju Weon;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.403-409
    • /
    • 1997
  • The equilibrium constants of five deoxyribonucleosides (dDyd, dUrd, dGuo, dThd, dAdo) were estimated by the plate theory and the moment method under isocratic conditions of the Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The mobile phase in this system was composed of water and organic modifiers(acetonitrile and methanol) The plate theory of linear adsorption isotherm was treated on the basis of continuous flow of eluent through the plates of the column. The moment method was utilized to find the equilibrium constant from the first absolute moment of experimental data. The equilibrium constants of five deoxyribonucleosides in the two methods were very close, and also the equilibrium constants calculated by capacity factor were similar to those by both the plate theory and the moment method. The equilibrium constant was expressed as a semi-log function of the quantity of organic modifier. Excellent agreements between the calculated elusion profile by the plate theory and the experimental data were observed.

  • PDF

Supercritical $CO_2$ Extraction of Genistein from Soybean (초임계 $CO_2$를 이용한 대두 Genistein의 추출)

  • Bu, Seong-Jun;Byeon, Sang-Yo
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.490-494
    • /
    • 1999
  • This study was carried out to examine some factors affecting the supercritical carbon dioxide extraction of genistein from soybean. The factors investigated in this study were pressure, temperature, flow rate of carbon dioxide, and concentration of modifier. It was foumd out that genistein is not extracted in the absence of modifier. Ethanol was found to be more effective modifier than methanol. 70% of genistein was extracted at 35$^{\circ}C$, 300bar and ethanol 15% (w/v) as compared with the performances of organic solvent extraction.

  • PDF