Flow Characteristics, Mechanical Properties and Chemical Resistance of Polycarbonate/Polybutylene Terephthalate/Impact Modifier Blends

Polycarbonate/polybutylene Terephthalate/Impact Modifier 블렌드의 유동특성, 기계적 성질 및 내화학성

  • 류민영 (서울산업대학교 금형설계학과 정밀기계기술연구소)
  • Published : 2002.03.01

Abstract

Mechanical properties, flow characteristics and chemical resistance of polycarbonate (PC)/polybutylene terephthalate (PBT) /impact modifier (IM) blends were investigated over the various composition ranges of PC and PBT. Mechanical properties of the PC/PBT/IM blends for different IMs, butadiene based IM and butyl acrylate based IM, were studied for various compositions of the IMs. Impact strength at low temperature was also observed. For the study of chemical resistance of the PC/PBT/IM blends, the blonds were dipped in organic solvent, thinner, and then variations of mechanical properties were analyzed. Tensile and flexural strengths were increased linearly and heat distortion temperature (HDT) also increased as PC content in the blends increased. Impact strength increased drastically as PC content increased up to 50 wt% and stayed stable value. Flowability decreased as PC content increased. Impact strengths of the blend were various for different IMs. Butyl acrylate based IM showed slightly higher impact strength than butadiene based IM for the temperature above $0^{\circ}C$. However, butadiene based IM showed remarkably higher impact strength than butyl acrylate based IM for the temperature below $0^{\circ}C$. Through the experiment of chemical resistance it was observed that tensile and flexural strengths decreased, and impact strength increased as PC content in the blends increased. PC in the blend would become mild and ductile when it contacted with organic solvent. Thus the impact strength increased while tensile and flexural strength decreased.

본 논문은 폴리카보네이트 (PC)/폴리부틸렌 테레프탈레이트 (PBT)/충격보강제 (IM) 블렌드에서 PC와 PBT의 조성비에 따른 기계적 성질 및 유동 특성을 조사하였다. 부타디엔계 IM과 부틸아크릴레이트계 IM을 사용하여 각각의 함량에 따른 상온에서의 기계적 물성의 변화와 저온에서의 충격강도를 관찰하였다. 블렌드의 내화학성을 살펴보기 위해 PC/PBT/IM 블렌드를 유기용제인 신너에 침지시킨 후 기계적 물성의 변화를 분석하였다. 블렌드에 PC 함량이 많아질수록 인장 및 굴곡강도가 선형적으로 증가하였고 열변형 온도 역시 증가하였다. 충격강도는 PC의 함량이 약 50 wt% 일 때까지 급격히 증가하며 그 이상의 함량에서는 일정하게 유지되었다. 유동성은 PC함량이 증가할수록 감소하였다. IM의 종류에 따라서 충격특성이 다르게 관찰되었는데, 부틸 아크릴레이트계 IM은 $0^{\circ}C$ 이상의 온도에서 부타디엔계 IM보다 충격강도가 다소 높게 나타났으나 $0^{\circ}C$ 미만에서는 충격강도가 현저하게 낮아졌다. 내화학성 실험에서는 블렌드에서 PC의 함량이 많을수록 인장 및 굴곡강도가 감소하는 반면 충격강도는 증가하였다. 이는 유기용제에 약한 PC가 연화되면서 나타나는 현상이라 사료된다.

Keywords

References

  1. Polymer Blends and Alloys G. O. Shonaike;G. P. Simon
  2. J. Appl. Polym. Sci. v.22 D. C. Wahrmund;D. R. Paul;J. W. Barlow https://doi.org/10.1002/app.1978.070220808
  3. Brit. Poly. J. v.16 A. W. Birley;X. Y. Chen https://doi.org/10.1002/pi.4980160206
  4. Polymer Science v.35 I. I. Perepechko;V. A. Danilov;V. V. Nizhegorodov;N. P. Bessonova;E. V. Konyukhova
  5. Polymer Science, Ser. A v.36 V. A. Danilov;I. I. Perepechko;V. V. Nizhegorodov;Y. K. Godovsky;E. V. Konyukhova;S. I. Belousov
  6. Polym. Bull. v.17 S. Y. Hobbs;V. L. Groshans;M. E. J. Dekkers;A. R. Shultz https://doi.org/10.1007/BF00955717
  7. Polymer v.35 M. Okamoto;T. Inoue https://doi.org/10.1016/0032-3861(94)90688-2
  8. Polymer v.38 A. C. M. van Bennekom;D. van den Berg;J. Bussink;R. J. Gaymans https://doi.org/10.1016/S0032-3861(97)00059-1
  9. Plastics and Rubber Processing and Applications v.10 H. Bertilsson;B. Franzen;J. Kubat
  10. Plastics and Rubber Processing and Applications v.10 H. Bertilsson;B. Franzen;J. Kubat
  11. J. Polym. Sci. v.20 J. Devaux;P. Godard;J. P. Mercier
  12. Polym. Eng. Sci. v.22 J. Devaux;P. Godard;J.P. Mercier https://doi.org/10.1002/pen.760220403
  13. J. Mater. Sci. v.28 J. Wu;Y.-W. Mai;B. Cotterell https://doi.org/10.1007/BF00354261
  14. J. Mater. Sci. v.28 J. Wu;Y.-W. Mai https://doi.org/10.1007/BF00365039
  15. J. Mater. Sci. v.29 J. Wu;Y.-W. Mai;A. F. Yee https://doi.org/10.1007/BF00376274
  16. J. Mater. Sci. v.35 J. Wu;D.-M. Yu;Y.-W. Mai;A. F. Yee https://doi.org/10.1023/A:1004741200924
  17. Polym. Eng. Sci. v.37 S. Hashemi https://doi.org/10.1002/pen.11734
  18. Polym. Bull. v.17 S. Y. Hobbs;M. E. J. Dekkers;V.H. Watkins https://doi.org/10.1007/BF00955718
  19. J. Mater. Sci. v.23 S. Y. Hobbs;M. E. J. Dekkers;V. H. Watkins https://doi.org/10.1007/BF01154581
  20. J. Mater. Sci. v.23 M. E. J. Dekkers;S. Y. Hobbs;V. H. Watkins https://doi.org/10.1007/BF01154582
  21. Brit. Poly. J. v.17 A. W. Birley;X. Y. Chen https://doi.org/10.1002/pi.4980170308
  22. Polym. Eng. Sci. v.28 A. Golovoy;M. F. Cheung;H. van. Oene https://doi.org/10.1002/pen.760280403
  23. Textbook of Polymer Science F. W. Billmeyer
  24. Polycarbonates W. F. Christopher;D. W. Fox