Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.2.126

Dispersion Properties of Epoxy-layered Silicate Nanocomposites Using Homogenizer  

Lee, Sang-Keuk (Department of Electric Engineering, College of Electronics & Information Engineering, Kwangwoon University)
Park, Jae-Jun (Department of Electrical Electronic Engineering, Joongbu University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.2, 2013 , pp. 126-133 More about this Journal
Abstract
This paper presents a study on the dispersion effect of the X-Ray diffraction, glass transition and DMA properties of organic modifier clay/epoxy nanocomposites produced in a homogenizer. Several experiments were conducted including different types of dispersion condition with varying processing conditions such as homogenizer rotor speed and applied time of homogenizer. The effects of these variables on the dispersion properties of nanocomposites were then studied. In order to fully understand the experimental results, a X-ray diffraction, DSC and DMA were used to investigate the effect of above mentioned variables on microstructure and intercalation/exfoliation of organic modifier clay/epoxy nanocomposites. The results from this work could be used to determine the best processing condition to obtain appropriate levels of d-spacing, glasss transition temperature and storage modulus in organic modifier clay/epoxy nanocomposites.
Keywords
Homogenizer; Epoxy-organic modifier clay nanocomposites; X-ray diffraction; Glass transition temperature; Dispersion condition; Intercalation/exfoliation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Sarathi, R. K. Sahu, and P. Rajeshkumar, Mater. Sci. Eng., A445, 567 (2007).
2 N. Hayakawa, H. Maeda, S. Chigusa, and H. Okubo, Cryogenics, 40, 167 (2000).   DOI   ScienceOn
3 B. Jo, S. Park, and D. Kim, Construct. Building Mater., 22, 14 (2008).   DOI   ScienceOn
4 A. Yasmin, J. L. Abot, and I. M. Daniel, Scr. Mater., 49, 81 (2003).   DOI   ScienceOn
5 A. Yasmin, J. J. Luo, and I. M. Daniel, Compos. Sci. Technol., 66, 1182 (2006).   DOI   ScienceOn
6 D. C. Lee and L. W. Jang, J. Appl. Polym. Sci., 68, 1997 (1998).   DOI   ScienceOn
7 H. R. Dennis, D. Hunter, D. Chang, S. Kim, and D. R. Paul, Polymer, 42, 9513 (2001).   DOI   ScienceOn
8 R. A. Vaia, K. D. Jant, E. J. Kramer, E. P. Giannelis, Chem. Mater., 8, 2628 (1996).   DOI   ScienceOn
9 J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul., 17, 1516 (2010).   DOI   ScienceOn
10 J. J. Park, C. H. Lee, J. Y. Lee, and H. D. Kim, IEEE Trans. Dielectr. Electr. Insul., 18, 667 (2011).   DOI   ScienceOn
11 S. D. Burnside and E. P. Giannelis, Chem. Mater., 7, 1597 (1995).   DOI
12 J. H. Park and S. Jana, Macromolecules, 36, 2758 (2003).   DOI   ScienceOn
13 F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, J. Compos. Mater., 40, 1511 (2006).   DOI
14 C. L. Wu, M. Q. Zhang, M. Z. Rong, and K. Friedrich, Compos. Sci. Technol., 62, 1327 (2002).   DOI   ScienceOn
15 I. J. Chin, Nanomaterials (Daeyoungsa, Seoul, 2005) p. 502-506.
16 D. Dean, A. M. Obore, S. Richmond, and E. Nyairo, Compos. Sci. Technol., 66, 2135 (2006).   DOI   ScienceOn
17 T. Lan and T. J. Pinnavaia, Chem. Mater., 6, 2216 (1994).   DOI   ScienceOn
18 J. Wang and S. Qin, Mater. Lett., 61, 4222 (2007).   DOI   ScienceOn
19 T. Imai, Y. Hirano, H. Hirai, S. Kojima, and T. Shimizu, Conf. Rec. IEEE ISEI, 379 (2002).
20 L. Y. Lin, J. H. Lee, C. E. Hong, G. H. Yoo, and S. G. Advani, Compos. Sci. Technol., 66, 2116 (2006).   DOI   ScienceOn
21 J. M. Brown, D. Curlss, and R. A. Vaia, Chem. Mater., 12, 3376 (2000).   DOI   ScienceOn