• Title/Summary/Keyword: organic fertilizers

Search Result 358, Processing Time 0.031 seconds

Effect of Soil Incorporation of Graminaceous and Leguminous Manures on Tomato (Lycoperiscon esculentum Mill.) Growth and Soil Nutrient Balances (화본과 및 두과 녹비작물 토양환원에 따른 토마토 생육 및 토양 양분수지량 변화)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.343-348
    • /
    • 2008
  • To investigate the effects of incorporation of green manures (GM) into a sandy loam soil on growth, yield, and nutrient uptake of tomato (Lycoperiscon esculentum Mill.) and nutrient balances (input minus offtake of nutrients), five tomato production systems were compared under the condition of plastic film house: 1) a no input system (no additional amendment or inputs, 0-To-0-To); 2) a conventional system (application of N-P-K chemical fertilizers, Cf-To-Cf-To); 3) a leguminous GM-containing system (hairy vetch-tomato-soybean-tomato, Hv-To-Sb-To); 4) a graminaceous GM-containing system (rye-tomato-sudan grass-tomato, Ry-To-Sd-To); and 5) system mixed with leguminous and graminaceous GMs (rye-tomatosoybean- tomato, Ry-To-Sb-To). Here, hairy vetch and rye were cultivated as winter cover crops during late $Dec{\sim}late$ Feb and soybean and sudan grass were cultivated as summer cover crops during late $Jun{\sim}mid$ Aug. All of them cut before tomato planting and then incorporated into soil. Biomass of GMs was greater in summer season than that of winter season. Nitrogen amount fixed by a leguminous plants was about $126\;kg\;ha^{-1}$ per a cropping season, corresponding to 60% N level needed for tomato production, which was comparable to 50 and $96\;kg\;ha^{-1}$ fixed by rye and sudan grass. As a result, tomato yield of Hv-To-Sb-To system (legume GM treatment) was similar to Cf-To-Cf-To (conventional), but that in Ry-To-Sd-To system (graminaceous GM treatment) was not attained to a half level of conventional treatment. Nutrient budgets for N, P and K on the conventional farm were balanced or somewhat positive exception for minus-balanced K. Ry-To-Sd-To system showed a positive N, P and K budgets due to the depressed growth of tomato which is caused by high C/N ratio and low N-fixing capacity of the GMs. Inversely, those of Hv-To-Sb-To system were negative in all of N, P and K budgets because of increased growth and yield of tomato with high nitrogen-supplying capacity as well as low C/N ratio of leguminous GM. In conclusion, although conventional cultivation has an advantage in relation to N, P and K nutrient budgets rather than GM-incorporated systems, a leguminous GMs could be recommended as nitrogen reservoir and soil amendment because the yield of tomato between use of leguminous GM and conventional cultivation was not only significantly difference, but also GMs commonly reduce nutrient loss and improve microbial communities.

Fertilizer Management Practices with Rice Straw Application for Improving Soil Quality in Watermelon Monoculture Greenhouse Plots (시비관리 및 생 볏짚 처리가 수박연작 시설재배지 토양에 미치는 영향)

  • Ahn, Byung-Koo;Lee, Young-Han;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.75-82
    • /
    • 2010
  • Indoor cultivation plots for watermelon plant mostly have salt-accumulation problem because of continuous cropping especially with the heavy applications of chemical fertilizers. Thus, this study was conducted to investigate selected soil properties and watermelon growth condition as affected by the application of different farming practices in the salt-affected soils of greenhouse plots used for continuous watermelon production. Five different practice conditions in the experimental plots were applied, 1) a conventional farming practice (CFP), 2) a nitrogen-phosphorus-potassium (NPK) fertilizer management practice (FMP), and 3) the FMP with different amounts (5, 10, and 15 ton $ha^{-1}$)of fresh rice straw treatments (FMP-RS), for three years of study. As comparing with CFP plots, soil organic matter content gradually increased during the experimental years, whereas it decreased in the FMP only plot. Soil pH was not changed in the CFP and FMP plot, but it declined in the FMP-RS plots; however, it increased again from the third year in the FMP-RS plots with applying 10 and 15 ton $ha^{-1}$ of RS treatments. The concentrations of exchangeable cations, $Ca^{2+}$ and $Mg^{2+}$, except $K^+$, and water-soluble anions, ${NO_3}^-$, $Cl^-$, ${SO_4}^{2-}$ and ${PO_4}^{3-}$, markedly decreased in FMP and FMP-RS plots. In particular, the application of rice straw tended to significantly decrease the ion concentrations, especially most anions, in the first year, but there was no more decrease in the second and third study years. With relation to the ion concentrations, the changes of electrical conductivity (EC) after applying the management practices showed very similar to those of the ion concentrations. In addition, incidence of withered watermelon plant after applying the management practices dramatically declined from approximately 20% in the CFP plot to 3.5% in the FMP-RS plots. Water melon fruit weight was also improved by the management practices, especially FMP-RS. Therefore, the fertilizer and/or fresh rice straw application management practices are beneficial to improve salt-affected soils and watermelon plant growth condition.

Effect of Soil Characteristics and Fertilizers Application on Fresh Root Yield of Aralia continentalis K. -I. Survey on Cultivation Methods and Soil Characteristics in the Main Producting Districts (독활(獨活) (Aralia continentalis K.)주산지(主産地) 토양특성(土壤特性)과 시비양분(施肥養分)이 근경수량(根莖收量)에 미치는 영향(影響) -I. 재배법(栽培法) 실태(實態) 및 토양특성(土壤特性) 조사(調査))

  • Oh, Dong-Hoon;Han, Soo-Gon;Kim, Gap-Cheol;Na, Jong-Seong;Park, Keon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.27-32
    • /
    • 1994
  • These studies were Conducted to survey cultivation methods, and to analyze soil chemical properties for stable production of Aralia continentalis K., a promising medicinal crop, in the main producting districts. Aralia continentalis K. was cultivated with planting budstocks in distances of $90cm{\times}60cm$ for 3~4 years in the same field, and application rates were N 10~31 kg/10a and P, K 8~17/10a using inorganic fertilizer, that is compound fertilizer(21-17-17) for basal dressings and urea for topdressings. Most of all, the soil surveyed was coarse loamy class which was well drained and soil depth is 50~150cm in the valleys. Soil pH was low, and content of organic matters and av. $P_2O_5$ was abundant but that of exchangeable cation such as Ca, Mg, K was deficient. The relationship between growth characteristics and weight of fresh root was positive correlation in the order of No. of root, stem width, No. of node and branch, plant height and root width. On the path coefficiant analysis, the relationship between content of soil K, Ca and root yield was more apparent than other chemical properties.

  • PDF

Composting Method and Physicochemical Characteristics of By-products from Home Garden Plants and Small Herbivore Feces (옥수수 부산물과 토끼 분변의 이화학적 성분특성 및 퇴비 제조조건)

  • Kim, Dae-Gyun;Kim, Jin-Young;Lee, Won-Suk;Kim, Hye-Hyeong;Seo, Myung-Whoon;Park, In-Tae;Hyun, Junge;Yoo, Gayoung
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.695-703
    • /
    • 2018
  • This study was conducted to suggest a sustainable farming practice forresource recycling in vegetable gardens of North Korea. In North Korea, farmers are allowed to own private vegetable gardens less than $100m^2$. However, usage of fertilizers in private vegetable gardens is very limited due to economic sanctions by UN security council. If North and South Korea initiated the cooperative action in the near future, agricultural sector would be the highest priority cooperation area. Considering the current North Korean situation in agriculture, we would like to suggest a method for producing organic fertilizer manure. For raw materials for producing manure, we selected corn byproduct, which is the most abundant material, and rabbits' feces, which are easily obtained from individual private farms in North Korea. As we cannot get corn byproducts and rabbits' feces from North Korea, we prepared samples of corn byproducts and rabbits; feces from many places in South Korea. After statistical analysis of variance, there was no significant difference in the T-N contents of corn byproducts from Gyeonggi, Gangwon, Chungnam, Chungbuk, Jeollabuk and Gyeongsangnam-dos, which indicates that the fertilizing quality of corn byproducts does not vary significantly in the spatial scale of South. Korea. In this sense, if we use corn samples from Gyeonggi province, they would not be very different from those of North Korean regions. Physicochemical properties of rabbits' feces were different between those eating feed grains and those eating plants only. Hence, we used rabbits' feces of the rabbits from Yeonchun area, which were fed by plants only. Using three different mixing ratios of corn byproducts and rabbits' feces, composting was conducted for 60 days. The mixing ratio of 1:1 produced the manure with % T-N of 1.98% and OM/N ratio of 31.7 after 30 days of composting, which is comparable to the quality of commercial manure.

Estimation of carbon storage in reclaimed coal mines: Focused on Betula platyphylla, Pinus koraiensis and Pinus spp. plantations (폐탄광 산림복구지의 수종별 탄소 저장량 추정: 자작나무, 잣나무, 소나무류 식재지를 중심으로)

  • Kim, Gwangeun;Kim, Seongjun;Kim, Hyun-Jun;Chang, Hanna;Kim, Hyungsub;Park, Yong-Ha;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.733-743
    • /
    • 2020
  • We estimated the carbon storage of coal mines reclaimed using Betula platyphylla (BP), Pinus koraiensis (PK), and Pinus spp. (PS, Pinus densiflora, Pinus rigida, and Pinus thunbergii). The carbon storage of tree biomass (TB), forest floor(FF), mineral soil (MS), and the total forest were quantified. Reclaimed sites were located in Gangwon-do, Gyeongsangbuk-do, and Jeollanam-do; reclamation was conducted at various times in each region. The carbon storage (ton C ha-1) in FF (BP: 3.31±0.59, PK: 3.60±0.93, PS: 4.65±0.92), MS (BP: 28.62±2.86, PK: 22.26±5.72, PS: 19.95±3.90), and the total forest(BP: 54.81±7.22, PK: 47.29±8.97, PS: 45.50±6.31) were lower than that of natural forests (NF). The carbon storage in TB was lower in BP (22.57±6.18) compared to NF, while those in PK(21.17±8.76) and PS (20.80±6.40) were higher than in NF. While there were no significant differences in the carbon storage of TB, FF, and the total forest among tree species, results from MS showed a significant difference among species. TB and the total forest carbon storages in all sites increased after reclamation. Soil pH and cation exchange capacity values in BP and PS were lower than in NF. Amounts of labile carbon, available phosphate, and microbial biomass carbon in reclaimed sites were less than half of NF. There are a number of methods that could increase the reclamation efficiency. Applications of lime or organic fertilizers, as well as tillage operations, may improve soil properties in reclaimed coal mines. Additionally, pruning and thinning would increase tree growth thereby increasing carbon storage.

Development of integrated microbubble and microfilter system for liquid fertilizer production by removing total coliform and improving reduction of suspended solid in livestock manure (가축분뇨 내 대장균 제거와 부유물질 저감 효율 향상을 통한 추비 생산용 미세기포 부상분리와 마이크로 필터 연계 시스템 개발)

  • Jang, Jae Kyung;Lee, Donggwan;Paek, Yee;Lee, Taeseok;Lim, Ryu Gap;Kim, Taeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.139-147
    • /
    • 2021
  • Livestock manure is used as an organic fertilizer to replace chemical fertilizers after sufficient fermentation in an aerobic bioreactor. On the other hand, liquid manure disposal problems occur repeatedly because soil spraying is restricted during the summer when the crops are growing. To use liquid fertilizer (LF) as an additional nutrient source for crops, it is necessary to reduce the amount of suspended solids (SS) in the liquid fertilizer and secure stability problems against pathogenic microorganisms. This study examined the effects of the simultaneous SS removal and E.coli sterilization in the LF using the microbubble (MB) generator (FeMgO catalyst insertion). The remaining SS were further removed using the integrated microbubble and microfilter system. During the floating process in the MB device, the SS were removed by 57.9%, and the coliform group was not detected (16,200→0 MPN/100 mL). By optimizing the HRT of the integrated system, the removal efficiency of the SS was improved by 92.9% under the 0.1h of HRT condition. After checking the properties of the treated LF, 64.5%, 70.1%, 54.9%, and 51.5% of the TCOD, SCOD, PO4-P, and TN, respectively, were removed. The treated effluent from such an integrated system has a lower SS content than that of the existing LF and does not contain coliforms; therefore, it can be used directly as an additional fertilizer.

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.

Effects of Nitrogen , Phosphorus and Potassium Application Rates on Oversown Hilly Pasture under Different Levels of Inclination II. Changes on the properties, chemical composition, uptake and recovery of mineral nutrients in mixed grass/clover sward (경사도별 3요소시용 수준이 겉뿌림 산지초지에 미치는 영향 II. 토양특성 , 목초의 무기양분함량 및 3요소 이용율의 변화)

  • 정연규;이종열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.3
    • /
    • pp.200-206
    • /
    • 1985
  • This field experiment was undertaken to assess the effects of three levels of inclination ($10^{\circ},\;20^{\circ},\;and\;30^{\circ}$) and four rates of $N-P_2O_5-K_2O$ (0-0-0-, 14-10-10, 28-25-25, and 42-40-40kg/10a) on establishment, yield and quality, and botanical compositions of mixed grass-clover sward. This second part is concerned with the soil chemical properties, concentrations and uptake of mineral nutrients, and percent recovery and efficiency of NPK. The results obtained after a two-year experiment are summarized as follows: 1. The pH, exchangeable Mg and Na, and base saturation in the surface soils were decreased by increasing the grade of inclination, whereas organic matter and available $P_2O_5$ tended to be increased. However, the changes in the Ca content and equivalent ratio of $K\sqrt{Ca+Mg}$ were not significant. The pH, exchangeable Ca and Mg, and base saturation were reduced by increasing the NPK rate, whereas available $P_2O_5$, exchangeable K, and equivalent ratio of $K\sqrt{Ca+Mg}$ tended to be increased. 2. The concentrations of mineral nutrients in grasses and weeds were not significantly affected by increasing the grade of slope in hilly pasture, whereas the concentrations of N, K, and Mg in legume were the lowest with the steep slope, which seemed to be related to the low legume yield. The Mg concentrations of all forage species were below the critical level for good forage growth and likelihood of grass tetany. 3. The increase of NPK rate resulted in the increment of N, K and Na concentrations, and the decrease of Mg and Ca in grasses. The P concentration was increased with P application, but there were no differences in that among the P rates applied. It resulted also in a slight increase of K, and a decrease of Mg in legume, but the contents of N, Ca, and Na were not affected by that. On the other hand, it has not affected the mineral contents in weeds except a somewhat increase of N. The mixed forages showed a increase of N and K contents, a decrease of Ca and Mg, and a slight change in P and Na. 4. The percent recovery of N, P and K by mixed forages were greatly decreased by increasing the grade of inclination and NPK rate. They were high in the order; K>N>P. The efficiency of mixed NPK applications was decreased by that. The efficiency of mixed NPK fertilizers absorbed was slightly decreased by the increased rate of NPK, but it was not affected by the grade of inclination.

  • PDF