• Title/Summary/Keyword: organic electrolyte

Search Result 273, Processing Time 0.021 seconds

Activity coefficients of Solvents and Ions in Electrolyte Solutions (전해질 용액에서 용매 및 이온의 활동도 계수)

  • Shim, Min-Young;Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.185-194
    • /
    • 2000
  • In this work we measured the total pressure of the aqueous solutions and the methanol-water solutions dissolved with inorganic salts, at $25^{\circ}C$. In organic electrolytes used in this work were $K_2SO_4$ and $(NH_4)_2SO_4$. Using the measured vapour pressures the activity coefficient of solvents and the mean ionic activity coefficient were obtained through thermodynamic relations. The activity coefficients of solvent and the mean ionic activity coefficirnt obtained in this work were fitted with Macedo's model and Acard's model. Both two models were good agreeable to the vapor pressure and the mean ionic activity coefficient for the electroyte aqueous solutions. For electrolyte /methanol/water solutions, Macedo's model had much deviation from experimental data, while Acard's model showed a good agreement with experimental data.

  • PDF

Preparation and Electric Double Layer Capacitance of Mesoporous Carbon

  • Shiraishi, Soshi;Kurihara, Hideyuki;Oya, Asao
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.133-137
    • /
    • 2001
  • Mesoporous activated carbon fiber (ACF) was prepared from phenolic resin containing a small amount (0.1 wt %) of organic nickel complex through carbonization and steam activation. Microporous ACF as reference sample was also prepared from phenolic resin without agent. In both cases of the mesoporous ACFs and the microporous ACFs, the electric double layer capacitance of the nonaqueous electrolyte (0.5 M $TEABF_4$/PC or 1.0 M $LiClO_4$/PC) was not proportional to the BET specific surface area. This is owing to the low permeability of nonaqueous electrolyte or the low mobility of ion in narrow micropores. However, the mesoporous ACF showed higher double layer capacitance than the microporous (normal) ACF. This result suggests that the presence of many mesopores promotes the formation of effective double layer or the transfer of ion in the micropore.

  • PDF

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

Recent Advances in Polybenzimidazole (PBI)-based Polymer Electrolyte Membranes for High Temperature Fuel Cell Applications

  • Vijayakumar, Vijayalekshmi;Kim, Kihyun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.643-651
    • /
    • 2019
  • Polybenzimidazole (PBI), an engineering polymer with well-known excellent thermal, chemical and mechanical stabilities has been recognized as an alternative to high temperature polymer electrolyte membranes (HT-PEMs). This review focuses on recent advances made on the development of PBI-based HT-PEMs for fuel cell applications. PBI-based membranes discussed were prepared by various strategies such as structural modification, cross-linking, blending and organic-inorganic composites. In addition, intriguing properties of the PBI-based membranes as well as their fuel cell performances were highligted.

Application of Ionic Liquids Based on 1-Ethyl-3-Methylimidazolium Cation and Fluoroanions to Double-Layer Capacitors

  • Ue, Makoto;Takeda, Masayuki
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.192-196
    • /
    • 2002
  • Ionic liquids based on l-ethyl-3-methylimidazolium cation $(EMI^+)$ and inorganic or organic anions containing fluorine atoms were applied to electrolyte materials for double-layer capacitors. The double-layer capacitors composed of a pair of activated carbon electrodes and an ionic liquid selected from $EMIBF_4,\; EMINbF_6,\;EMITaF_6,\;EMICF_3SO_3,\;EMI(CF_3SO_2)_2N,\;and\;EMI(C_2F_5SO_2)_2N$ showed inferior low-temperature characteristics to those of a conventional nonaqueous electrolyte based on propylene carbonate (PC) solvent. On the other hand, the capacitor using $EMIF{\cdot}2.3HF$ showed excellent low-temperature characteristics due to its high conductivity at low temperatures, however, it had a lower working voltage $(\~2V)$ than the conventional nonaqueous counterpart $(\~3V)$.

Synthesis of Starch-g-PAN Polymer Electrolyte Membrane and Its Application to Flexible Solid Supercapacitors (Starch-g-PAN 고분자 전해질막 합성 및 플렉서블 고체 슈퍼 캐퍼시터 응용)

  • Min, Hyo Jun;Jung, Joo Hwan;Kang, Miso;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.164-172
    • /
    • 2019
  • In this work, we demonstrate a facile process to prepare an electrolyte membrane for the supercapacitor based on a graft copolymer consisting of starch and poly(acrylonitrile) (PAN). The graft copolymer (starch-g-PAN) was synthesized via free radical polymerization initiated by ceric ions. The starch-g-PAN was dissolved in ionic liquid, i.e. 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA) without any organic solvents at room temperature. The gelation of polymer electrolyte membranes occurred by applying high temperature, i.e. $100^{\circ}C$ for 1 hour. The resultant electrolyte membrane was flexible and thus applied to flexible solid supercapacitors. The performance of the supercapacitor based on starch-g-PAN graft copolymer electrolyte reached 21 F/g at a current density of 0.5 A/g. The cell also showed high cyclic stability with 86% of retention rate within 10,000 cycles. The preparation of starch-g-PAN based polymer electrolyte membrane provides opportunities for facile fabrication of flexible solid supercapacitors with good performance.

Electrodeposition of lead from $PbCl_2$-Acetate-Succinate Solutions (염화인-아세트산-숙신산 염 용액에서 납의 전해석출)

  • Kang, Tak
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.2
    • /
    • pp.44-50
    • /
    • 1986
  • Effects of cathodic overvoltages on the electrodeposition of lead from electrolyte containing lead chloride, ammonium acetate and sodium succinate was investigated at 20$^{\circ}C$. The use of organic additives, phenol and gelatin was found effective to inhibit the growth of dendritic crystals. At the carthodic overvoltages higher than 0.2V, the lead deposit becames less compact even in the presence of organic additives. The applications of agitation and pulse current promoted compact and shiny deposits.

  • PDF

Corrosion Behavior of Stainless Steel 304, Titanium, Nickel and Aluminium in Non-Aqueous Electrolytes

  • Dilasari, Bonita;Park, Jesik;Kusumah, Priyandi;Kwon, Kyungjung;Lee, Churl Kyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.26-29
    • /
    • 2014
  • The corrosion behavior of stainless steel 304 (SS 304), titanium, nickel and aluminium is studied by immersion and anodic polarization tests in non-aqueous electrolytes. Tetraethyl ammonium tetrafluoroborate is used as a supporting electrolyte in the three kinds of solvents. The immersion test shows that chemical corrosion rate in propylene carbonate-based electrolyte is lower than those in acetonitrile- or ${\gamma}$-butyrolactone-based electrolytes. Surface analyses do not reveal any corrosion product formed after the immersion test. In the anodic polarization tests, a higher concentration of supporting electrolyte gives a higher current density. In addition, a higher temperature increases the current density in the active region and reduces the potential range in the passive region. SS 304 shows the highest corrosion potential while Al shows the lowest corrosion potential and the highest current density in all studied conditions. Based on the conducted corrosion tests, the corrosion resistance of metal substrates in the organic solvents can be sorted in descending order as follows: SS 304 - Ti - Ni - Al.

Fabrication of Flexible Solid-state Dye-sensitized $TiO_2$ Nanotube Solar Cell Using UV-curable NOA

  • Park, Ik-Jae;Park, Sang-Baek;Kim, Ju-Seong;Jin, Gyeong-Seok;Hong, Guk-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.396-396
    • /
    • 2012
  • $TiO_2$ anatase nanotube arrays (NTAs) were grown by electrochemical anodization and followed annealing of Ti foil. Ethylene glycol/$NH_4F$-based organic electrolyte was used for electrolyte solution and using second anodization process to obtain free-standing NTAs. After obtaining NTAs, ITO film was deposited by sputtering process on bottom of NTAs. UV-curable NOA was used for attach free-standing NTAs on flexible plastic substrate (PEN). Solid state electrolyte (spiro-OMeTAD) was coated via spin-coating method on top of attached NTAs. Ag was deposited as a counter electrode. Under AM 1.5 simulated sunlight, optical characteristics of devices were investigated. In order to use flexible polymer substrate, processes have to be conducted at low temperature. In case of $TiO_2$ nano particles (NPs), however, crystallization of NPs at high temperature above $450^{\circ}C$ is required. Because NTAs were conducted high temperature annealing process before NTAs transfer to PEN, it is favorable for using PEN as flexible substrate. Fabricated flexible solid-state DSSCs make possible the preventing of liquid electrolyte corrosion and leakage, various application.

  • PDF