Browse > Article
http://dx.doi.org/10.14478/ace.2019.1080

Recent Advances in Polybenzimidazole (PBI)-based Polymer Electrolyte Membranes for High Temperature Fuel Cell Applications  

Vijayakumar, Vijayalekshmi (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Kim, Kihyun (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.6, 2019 , pp. 643-651 More about this Journal
Abstract
Polybenzimidazole (PBI), an engineering polymer with well-known excellent thermal, chemical and mechanical stabilities has been recognized as an alternative to high temperature polymer electrolyte membranes (HT-PEMs). This review focuses on recent advances made on the development of PBI-based HT-PEMs for fuel cell applications. PBI-based membranes discussed were prepared by various strategies such as structural modification, cross-linking, blending and organic-inorganic composites. In addition, intriguing properties of the PBI-based membranes as well as their fuel cell performances were highligted.
Keywords
Cross-linking; Fuel cell; Polybenzimidazole; Polymer electrolyte membrane; Structure modification;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Abouzari Lotf, M. Zakeri, M.M. Nasef, M. Miyake, P. Mozarmnia, N.A. Bazilah, N.F. Emelin, and A. Ahmad, Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells, J. Power Sources, 412, 238-245 (2019).   DOI
2 N. N. Krishnan, S. Lee, R. V. Ghorpade, A. Konovalova, J. H. Jang, H. J. Kim, J. Han, D. Henkensmeier, and H. Han, Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated $TiO_2$ as both filler and crosslinker, and their use in the HT-PEM fuel cell, J. Membr. Sci., 560, 11-20 (2018).   DOI
3 J. Kerres and V. Atanasov, Cross-linked PBI based high temperature membranes: Stability, conductivity and fuel cell performance, Int. J. Hydrogen Energy, 40, 14723-14735 (2015).   DOI
4 L. Wang, Z. Liu, J. Ni, M. Xu, C. Pan, D. Wang, D. Liu, and L. Wang, Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high-temperature fuel cells, J. Membr. Sci., 572, 350-357 (2019).   DOI
5 T. T. Ou, H. Chen, B. Hu, H. Zheng, W. Li, and Y. Wang, A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 43, 12337-12345 (2018).   DOI
6 H. Namazi and H. Ahmadi, Novel proton conducting membranes based on butylsulfonated poly[2,2'-(m-pyrazolidene)-5,5'-bibenzimidazole] (BS-PPBI): Proton conductivity, acid doping and water uptake properties, J. Membr. Sci., 383, 280-288 (2011).   DOI
7 S. W. Choi, J. O. Park, C. Pak, K. H. Choi, J. C. Lee, and H. Chang, Design and synthesis of cross-linked copolymer membranes based on poly(benzoxazine) and polybenzimidazole and their application to an electrolyte membrane for a high-temperature PEM fuel cell, Polymers, 5, 77-111 (2013).   DOI
8 X. Wang, S. Wang, C. Liu, J. Li, F. Liu, X. Tian, H. Chen, T. Mao, J. Xu, and Z. Wang, Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs, Electrochim. Acta, 283, 691-698 (2018).   DOI
9 S. K. Kim, S. W. Choi, W. S. Jeon, J. O. Park, T. Ko, H. Chang, and J. C. Lee, Cross-linked benzoxazine-benzimidazole copolymer electrolyte membranes for fuel cells at elevated temperature, Macromolecules, 45, 1438-1446 (2012).   DOI
10 S. K. Kim, K. H. Kim, J. O. Park, K. Kim, T. Ko, S. W. Choi, C. Pak, H. Chang, and J. C. Lee, Highly durable polymer electrolyte membranes at elevated temperature: Cross-linked copolymer structure consisting of poly(benzoxazine) and poly(benzimidazole), J. Power Sources, 226, 346-353 (2013).   DOI
11 H. L. Lin, C. R. Hu, S. W. Lai, and T. L. Yu, Polybenzimidazole and butylsulfonate grafted polybenzimidazole blends for proton exchange membrane fuel cells, J. Membr. Sci., 389, 399-406 (2012).   DOI
12 L. Wang, Z. Liu, Y. Liu, and L. Wang, Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells, J. Membr. Sci., 583, 110-117 (2019).   DOI
13 H. Chen, S. Wang, J. Li, F. Liu, X. Tian, X. Wang, T. Mao, J. Xu, and Z. Wang, Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications, J. Taiwan Inst. Chem. Eng., 95, 185-194 (2019).   DOI
14 N. Nambi Krishnan, A. Konovalova, D. Aili, Q. Li, H. S. Park, J. H. Jang, H. J. Kim, and D. Henkensmeier, Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells, J. Membr. Sci., 588, 117218 (2019).   DOI
15 M. Niu, C. Zhang, G. He, F. Zhang, and X. Wu, Pendent piperidinium-functionalized blend anion exchange membrane for fuel cell application, Int. J. Hydrogen Energy, 44, 15482-15493 (2019).   DOI
16 M. Song, X. Lu, Z. Li, G. Liu, X. Yin, and Y. Wang, Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes, Int. J. Hydrogen Energy, 41, 12069-12081 (2016).   DOI
17 S. W. Chuang, S. L. C. Hsu, and Y. H. Liu, Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells, J. Membr. Sci., 305, 353-363 (2007).   DOI
18 X. Li, P. Wang, Z. Liu, J. Peng, C. Shi, W. Hu, Z. Jiang, and B. Liu, Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells, J. Power Sources, 393, 99-107 (2018).   DOI
19 C. Y. Wong, W. Y. Wong, K. Ramya, M. Khalid, K. S. Loh, W. R. W. Daud, K. L. Lim, R. Walvekar, and A. A. H. Kadhum, Additives in proton exchange membranes for low and high temperature fuel cell applications: A review, Int. J. Hydrogen Energy, 44, 6116-6135 (2019).   DOI
20 T. Y. Son, T. H. Kim, H. J. Kim, and S. Y. Nam, Problems and solutions of anion exchange membranes for anion exchange membrane fuel cell (AEMFC), Appl. Chem. Eng., 29, 489-496 (2018).   DOI
21 C. Lee, H. Na, Y. Jeon, H. J. Hwang, H. J. Kim, I. Mochida, S. H. Yoon, J. I. Park, and Y. G. Shul, Poly(ether imide) nanofibrous web composite membrane with $SiO_2$/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells, J. Ind. Eng. Chem., 74, 7-13 (2019).   DOI
22 M. Won, S. Kwon, and T. H. Kim, High performance blend membranes based on sulfonated poly(arylene ether sulfone) and poly-(p-benzimidazole) for PEMFC applications, J. Ind. Eng. Chem., 29, 104-111(2015).   DOI
23 N. N. Krishnan, D. Joseph, N. M. H. Duong, A. Konovalova, J. H. Jang, H. J. Kim, S. W. Nam, and D. Henkensmeier, Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells, J. Membr. Sci., 544, 416-424 (2017).   DOI
24 M. S. Shin, D. E. Kim, and J. S. Park, Preparation and characterizations of poly(arylene ether sulfone)/ $SiO_2$ composite membranes for polymer electrolyte fuel cell, Membr. J., 27, 182-188 (2017).   DOI
25 Y. Ozdemir, N. Uregen, and Y. Devrim, Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells, Int. J. Hydrogen Energy, 42, 2648-2657 (2017).   DOI
26 X. Zhang, Q. Liu, L. Xia, D. Huang, X. Fu, R. Zhang, S. Hu, F. Zhao, X. Li, and X. Bao, Poly(2,5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range, J. Membr. Sci., 574, 282-298 (2019).   DOI
27 P. Muthuraja, S. Prakash, V. M. Shanmugam, S. Radhakrsihnan, and P. Manisankar, Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: Synthesis and characterizations, Int. J. Hydrogen Energy, 43, 4763-4772 (2018).   DOI
28 M. R. Berber and N. Nakashima, Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions, J. Membr. Sci., 591, 117354 (2019).   DOI
29 Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, PBI-based polymer membranes for high temperature fuel cells - Preparation, characterization and fuel cell demonstration, Fuel Cells, 4, 147-159 (2004)   DOI
30 X. Tian, S. Wang, J. Li, F. Liu, X. Wang, H. Chen, D. Wang, H. Ni, and Z. Wang, Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications, Appl. Surf. Sci., 465, 332-339 (2019).   DOI
31 Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Prog. Polym. Sci., 34, 449-477 (2009).   DOI
32 G. J. Dahe, R. P. Singh, K. W. Dudeck, D. Yang, and K. A. Berchtold, Influence of non-solvent chemistry on polybenzimidazole hollow fiber membrane preparation, J. Membr. Sci., 577, 91-103 (2019).   DOI
33 S. K. Kim, T. Ko, K. Kim, S. W. Choi, J. O. Park, K. H. Kim, C. Pak, H. Chang, and J. C. Lee, Poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] and poly[6-fluoro-3-(pyridin-2-yl)-3,4-dihydro-2H-benzoxazine] based polymer electrolyte membranes for fuel cells at elevated temperature, Macromol. Res., 20, 1181-1190 (2012).   DOI
34 Q. X. Wu, Z. F. Pan, and L. An, Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications, Renew. Sustain. Energy Rev., 89, 168-183 (2018).   DOI
35 A. Vassiliev, A. K. Reumert, J. O. Jensen, and D. Aili, Durability and degradation of vapor-fed direct dimethyl ether high temperature polymer electrolyte membrane fuel cells, J. Power Sources, 432, 30-37 (2019).   DOI
36 P. Mustarelli, E. Quartarone, S. Grandi, A. Carollo, and A. Magistris, Polybenzimidazole-based membranes as a real alternative to nafion for fuel cells operating at low temperature, Adv. Mater., 20, 1339-1343 (2008).   DOI
37 S. Singha, R. Koyilapu, K. Dana, and T. Jana, Polybenzimidazole-clay nanocomposite membrane for PEM fuel cell: Effect of organomodifier structure, Polymer, 167, 13-20 (2019).   DOI
38 Y. Lv, Z. Li, M. Song, P. Sun, X. Yin, and S. Wang, Preparation and properties of ZrPA doped CMPSU cross-linked PBI based high temperature and low humidity proton exchange membranes, React. Funct. Polym., 137, 57-70 (2019).   DOI
39 M. Moradi, A. Moheb, M. Javanbakht, and K. Hooshyari, Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-$Fe_2TiO_5$ nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC), Int. J. Hydrogen Energy, 41, 2896-2910 (2016).   DOI
40 A. A. Lysova, I. A. Stenina, A. O. Volkov, I. I. Ponomarev, and A. B. Yaroslavtsev, Proton conductivity of hybrid membranes based on polybenzimidazoles and surface-sulfonated silica, Solid State Ionics, 329, 25-30 (2019).   DOI