DOI QR코드

DOI QR Code

Application of Ionic Liquids Based on 1-Ethyl-3-Methylimidazolium Cation and Fluoroanions to Double-Layer Capacitors

  • Ue, Makoto (Mitsubishi Chemical Corporation, Science & Technology Research Center, Electrochemistry Laboratory) ;
  • Takeda, Masayuki (Mitsubishi Chemical Corporation, Science & Technology Research Center, Electrochemistry Laboratory)
  • Published : 2002.11.01

Abstract

Ionic liquids based on l-ethyl-3-methylimidazolium cation $(EMI^+)$ and inorganic or organic anions containing fluorine atoms were applied to electrolyte materials for double-layer capacitors. The double-layer capacitors composed of a pair of activated carbon electrodes and an ionic liquid selected from $EMIBF_4,\; EMINbF_6,\;EMITaF_6,\;EMICF_3SO_3,\;EMI(CF_3SO_2)_2N,\;and\;EMI(C_2F_5SO_2)_2N$ showed inferior low-temperature characteristics to those of a conventional nonaqueous electrolyte based on propylene carbonate (PC) solvent. On the other hand, the capacitor using $EMIF{\cdot}2.3HF$ showed excellent low-temperature characteristics due to its high conductivity at low temperatures, however, it had a lower working voltage $(\~2V)$ than the conventional nonaqueous counterpart $(\~3V)$.

Keywords

References

  1. U. S. Pat. v.2 no.446 F. H. Hurley
  2. U. S. Pat. v.2 no.446 T. P. Wier;F. H. Hurley
  3. U. S. Pat. v.2 no.446 T. P. Wier;F. H. Hurley
  4. J. Electrochem. Soc. v.98 no.203 F. H. Hurley;T. P. Wier https://doi.org/10.1149/1.2778133
  5. Chemistry of Nonaqueous Solutions C. L. Hussey;G. Mamantov(eds.);A. I. Popov(eds.)
  6. Chemistry of Nonaqueous Solutions R. T. Carlin;J. S. Wilkes;G. Mamantov(eds.);A. I. Popov(eds.)
  7. Nonaqueous Electrochemistry I. Galasiu;R. Galasiu;J. Thonstad;D. Aurbach(eds.)
  8. The Electrochemical Society Proceedings Series v.PV92 no.16 in Proceedings of the 8th International Symposium on Ionic Liquids E. I. Cooper;E. J. M. O'Sullivan;R. J. Gale(eds.);G. Blomgren(eds.);H. Kojima(eds.)
  9. J. Chem. Soc. Chem. Commun. J. S. Wilkes;M. J. Zaworotko
  10. J. Chem. Soc. Chem. Commun. J. Fuller;R. T. Carlin;H. C. De Long;D. Haworth
  11. J. Electrochem. Soc. v.141 R. T. Carlin;H. C. De Long;J. Fuller;P. C. Trulove https://doi.org/10.1149/1.2055041
  12. J. Electrochem. Soc. v.142 V. R. Koch;C. Nanjundiah;G. B. Appetecchi;B. Scrosati https://doi.org/10.1149/1.2044332
  13. Inorg. Chem. v.35 P. Bonhote;A.-P. Dias;N. Papageorgiou;K. Kalyanasundaram;M. Grazel https://doi.org/10.1021/ic951325x
  14. J. Electrochem. Soc. v.143 N. Papageorgiou;Y. Athanassov;M. Armand;P. Bonhote;H. Pettersson;A. Azam;M. Grazel https://doi.org/10.1149/1.1837171
  15. Florida Educational Seminars in Proceedings of the 4th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices V. R. Koch;C. Nanjundiah
  16. J. Electrochem. Soc. v.143 V. R. Koch;L. A. Dominey;C. Nanjundiah;M. J. Ondrechen https://doi.org/10.1149/1.1836540
  17. Florida Educational Seminars in Proceedings of the 5th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices V. R. Koch;C. Nanjundiah;J. L. Goldman
  18. U. S. Pat. v.5 no.827 V. R. Koch;C. Nanjundiah;R. T. Carlin
  19. J. Electrochem. Soc. v.144 C. Nanjundiah;S. F. McDevitt;V. R. Koch https://doi.org/10.1149/1.1838024
  20. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications B. E. Conway
  21. Technologeis & Materials for EDLC A. Nishino;K. Naoi(eds.)
  22. Denki Kagaku (presently Electrochemistry) v.66 M. Ue
  23. Florida Educational Seminars in Proceedings of the 8h International Seminar on Double Layer Capacitors and Similar Energy Storage Devices M. Ue
  24. Cur. Top. Electrochem. v.7 M. Ue
  25. J. Electrochem. Soc. v.141 M. Ue;K. Ida;S. Mori https://doi.org/10.1149/1.2059270
  26. Denki Kagaku (presently Electrochemistry) v.65 M. Ue;M. Takehara;M. Takeda
  27. J. Electrochem. Soc. v.144 M. Ue;M. Takeda;M. Takehara;S. Mori https://doi.org/10.1149/1.1837882
  28. Electrochemistry v.70 M. Ue;M. Takeda
  29. Electrochem. Solid-State Lett. v.5 M. Ue;M. Takeda;T. Takahashi;M. Takehara https://doi.org/10.1149/1.1472255
  30. J. Electrochem. Soc., submitted. M. Ue;M. Takeda;A. Toriumi;A. Kominato;R. Hagiwara;Y. Ito
  31. Abstracts C-4-2 in Asian Conference on Electrochemistry 2002 M. Ue
  32. U. S. Pat. v.4 no.892 S. Mori;K. Ida;M. Ue
  33. J. Fluorine Chem. v.99 R. Hagiwara;T. Hirashige;T. Tsuda;Y. Ito https://doi.org/10.1016/S0022-1139(99)00111-6
  34. J. Electrochem. Soc. v.149 R. Hagiwara;T. Hirashige;T. Tsuda;Y. Ito https://doi.org/10.1149/1.1421606
  35. J. Fluorine Chem. v.105 R. Hagiwara;Y. Ito https://doi.org/10.1016/S0022-1139(99)00267-5
  36. Electrochemistry v.70 R. Hagiwara
  37. Inorg. Chem. v.21 J. S. Wilkes;J. A. Levisky;R. A. Wilson;C. L. Hussey https://doi.org/10.1021/ic00133a078
  38. J. Electrochem. Soc. v.134 P. R. Gifford;J. B. Palmisano https://doi.org/10.1149/1.2100516
  39. Solid St. Sci. v.4 K. Matsumoto;T. Tsuda;R. Hagiwara;Y. Ito;O. Tamada https://doi.org/10.1016/S1293-2558(01)01223-7
  40. J. Electrochem. Soc. v.144 C. Nanjundiah;S. F. McDevitt;V. R. Koch https://doi.org/10.1149/1.1838024
  41. J. Electrochem. Soc. v.146 A. B. McEwen;H. L. Ngo;K. LeCompte;J. L. Goldman https://doi.org/10.1149/1.1391827
  42. J. Chem. Soc. Chem. Commun. v.2000 C. H. Song;W. H. Shim;E. J. Roh;J. H. Choi
  43. J. Fluorine Chem. v.115 K. Matsumoto;R. Hagiwara;Y. Ito https://doi.org/10.1016/S0022-1139(02)00037-4
  44. The Electrochemical Society Proceedings Series v.PV98 no.15 in Selected Battery Topics J. L. Goldman;A. B. McEwen;W. R. Cieslak(ed.)
  45. The Electrochemical Society Proceedings Series v.PV99 no.41 in Molten Salts ⅩⅡ A. B. McEwen;J. L. Goldman;D. Wasel;L. Hargens;H. C. DeLong(eds.);P. C. Trulove(eds.);G. R. Stafford(eds.);S. Deki(eds.)
  46. J. Chem. Soc. Chem. Commun. v.2001 D. R. MacFarlane;J. Goldings;S. Forsyth;M. Forsyt;G. B. Deacon
  47. J. Electrochem. Soc. v.149 D. M. Ryan;T. L. Riechel;T. Welton https://doi.org/10.1149/1.1454137
  48. J. Electrochem. Soc. v.149 M. Ue;A. Murakami;S. Nakamura https://doi.org/10.1149/1.1507593
  49. J. Electrochem. Soc. v.149 M. Ue;A. Murakami;S. Nakamura https://doi.org/10.1149/1.1517579

Cited by

  1. Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Mechanism vol.7, pp.7, 2016, https://doi.org/10.1021/acs.jpclett.6b00202
  2. Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells vol.138, pp.1-2, 2004, https://doi.org/10.1016/j.jpowsour.2004.06.027
  3. Electrolyte based on fluorinated cyclic quaternary ammonium ionic liquids vol.18, pp.9, 2012, https://doi.org/10.1007/s11581-012-0688-x
  4. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications vol.49, pp.21, 2004, https://doi.org/10.1016/j.electacta.2004.03.030
  5. Binding of fluoroanions by a cationic cobalt(III) complex: Syntheses, characterization and single crystal X-ray structure determination of [Co(phen)2CO3]BF4 and [Co(phen)2CO3]PF6·3H2O vol.994, pp.1-3, 2011, https://doi.org/10.1016/j.molstruc.2011.02.040
  6. Supercapacitive properties of activated carbon electrode in organic electrolytes containing single- and double-cationic liquid salts vol.89, 2013, https://doi.org/10.1016/j.electacta.2012.10.085
  7. Second sphere interaction in fluoroanion binding: Synthesis, spectroscopic and X-ray structural study of trans-dichlorobis(ethylenediamine) cobalt(III) terafluoroborate vol.129, pp.5, 2008, https://doi.org/10.1016/j.jfluchem.2008.01.006
  8. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries vol.162, pp.1, 2006, https://doi.org/10.1016/j.jpowsour.2006.02.077
  9. Surface Analysis of Ionic Liquids with and without Lithium Salt Using X-ray Photoelectron Spectroscopy vol.116, pp.35, 2012, https://doi.org/10.1021/jp301658k
  10. High Energy-Density Capacitor Based on Ammonium Salt Type Ionic Liquids and Their Mixing Effect by Propylene Carbonate vol.152, pp.4, 2005, https://doi.org/10.1149/1.1869232
  11. Ionic liquid-alkane association in dilute solutions vol.117, pp.1, 2006, https://doi.org/10.1007/s00214-006-0155-8
  12. Preparation of Solid Polymer Electrolytes by Ultraviolet Radiation and the Electrochemical Properties of Activated Carbon Supercapacitor Adopting Them vol.16, pp.2, 2013, https://doi.org/10.5229/JKES.2013.16.2.91
  13. New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions vol.125, pp.3, 2004, https://doi.org/10.1016/j.jfluchem.2003.12.003
  14. High rate performance of a lithium polymer battery using a novel ionic liquid polymer composite vol.164, pp.1, 2007, https://doi.org/10.1016/j.jpowsour.2006.10.048
  15. Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: 1-Alkyl(Alkyl Ether)-3-methylimidazolium Perfluoroalkyltrifluoroborate vol.10, pp.24, 2004, https://doi.org/10.1002/chem.200400533
  16. Second sphere coordination in anion binding: Synthesis, spectroscopic characterization and single crystal X-ray structure determination of hexaamminecobalt(III) dichloride tetrafluoroborate vol.126, pp.11-12, 2005, https://doi.org/10.1016/j.jfluchem.2005.09.002
  17. Application of 1-ethyl-3-methylimidazolium thiocyanate to the electrolyte of electrochemical double layer capacitors vol.162, pp.2, 2006, https://doi.org/10.1016/j.jpowsour.2006.08.028
  18. PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases vol.389, pp.7-8, 2007, https://doi.org/10.1007/s00216-007-1625-0
  19. Favorable combination of positive and negative electrode materials with glyme–Li salt complex electrolytes in lithium ion batteries vol.196, pp.8, 2011, https://doi.org/10.1016/j.jpowsour.2010.12.087