• Title/Summary/Keyword: organic cultivation

Search Result 922, Processing Time 0.032 seconds

Artificial Cultivation of Tricholoma giganteum Collected in Korea (I) - Morphological Charateristics of Fruitbody and Environmental Condition in Habitat of T. giganteum - (한국산 왕송이버섯의 인공재배 (I) - 자실체 형태적 특징과 발생지 환경조사 -)

  • Kim, Han-Kyoung;Kim, Yang-Sup;Seok, Soon-Ja;Kim, Gwang-Po;Cha, Dong-Yeul
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.182-186
    • /
    • 1998
  • The result of study on the morphological feature of fruitbody, soil characteristics and enviromental condition of habitat of Tricholoma giganteum in Korea was as follows: The Pileus was $5.5{\sim}28.0\;cm$ in diameter and $1.5{\sim}3.7\;cm$ in thickness, indicating of yellowish white, beige, or ivory color. The lamellae were $18{\sim}20\;mm$ in diameter; the stipe was $9.0{\sim}35.7\;cm$ long and $1.0{\sim}3.0\;cm$ wide. The spores were $3.5{\sim}4.8{\times}5.7{\sim}7.4\;{\mu}m$ in size, ellipsoid, hyaline and the spore deposit white. The basidia were $6.1{\sim}7.0{\times}32.2{\sim}39.2\;{\mu}m$ in size. Cheiloystidia were $3.5{\sim}4.4{\times}30.5{\sim}33.1\;{\mu}m$ in size. Pileipellis were $3.3{\sim}4.4{\times}33.0{\sim}55.0\;{\mu}m$ wide and had clamp connection. Stipitipellis were $2.2{\sim}3.3{\times}88.0{\sim}93.1\;{\mu}m$ in size. Texture of soil in habitate of T. giganteum was silty loam, and organic materials content and available phosphate content in this soil were high as comparision to general soil in Korea. In the time of the mushrooms sprout, the room temperature indicated $25{\sim}27^{\circ}C$, their humidity showed $80{\sim}83%$, and the brightnesses were 328 Lux.

  • PDF

Studies on the Root Rot of Ginseng - (IV) Distribution of Fungi and Fusarium sp. Population in Ginseng Cultivation Soil - (인삼근부병(人蔘根腐病)에 관(關)한 연구(硏究) - (IV) 인삼재배토양중(人蔘栽培土壤中)의 균류(菌類) 및 Fusarium sp.의 분포(分布)에 관(關)하여 -)

  • Kim, Jong-Hee;Lee, Min-Woong;Kim, Gwang-Po
    • The Korean Journal of Mycology
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 1974
  • A severe ginseng root rot disease was occurred and became widespraed in 1973 affecting the ginseng cultivating plot around Kangwha and Gimpo-Gun of Kyunggi province. Soil samples were collected from the area of Wolgot-Myun, Gimpo-Gun, Kuunggi-Do, 1974. We examined general fungi and Fusarium sp. in soil layers and also in different kinds of soil of respective diseased, uncultivated and healthy areas, and found the following results. 1. In the diseased and uncultivated area, the content of moisture, organic matter and silt was greater than in the healthy area. 2. Contray to the above, the healthy area contained a greater amount of inorganic elements such as $P_2O_5$, K,Ca and of soil particle such as Cs and Fs. The degree of pH and content of Mg were even in the three types of soils. 3. General fungi were found in abundance in the diseased and uncultivated soils. It was observed that in all types of areas, general fungi reside in abundance in the rhizosphere, i.e., 10-15cm layers and that the closer the surface, the greater the numbers of fungi. 4. A great number of Fusarium sp. was found in the uncultivated area, and followed diseased and healthy areas. It was observed that in all types of areas, Fusarium sp. distributed in abundance in rhizosphere and that the closer the surface, the greater the numbers of Fusarium sp., with the numbers decreasing as the soil layers increase.

  • PDF

Elimination and Utilization of Pollutants - Part I Microbiological Clarification of Industrial Waste and Its Utilization as Feed Resources - (환경오염원(環境汚染源)의 제거(除去)와 그 이용성(利用性)에 관(關)한 연구(硏究) - 제(報I)1보(第). 미생물(微生物)에 의(依)한 산업폐수(産業廢水)의 정화(淨化) 및 사료자원개발(飼料資源開發)에 개(開)하여 -)

  • Lee, Ke-Ho;Lee, Kang-Heup;Park, Sung-O
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 1980
  • Industrial wastes from pulp and food plants were treated with microorganisms to clarify organic waste-water and to produce cells as animal feed, and results were summarized as follows. (1) Waste-water from pulp, beer, bread yeast, and ethanol distillation plants contained $1.4{\sim}1.5%$ of total sugar, $0.25{\sim}0.35%$ nitrogen, and biological oxygen demand (BOD) was $400{\sim}25,000$, chemical oxygen demand (COD), $500{\sim}28,000$, and pH, $3.8{\sim}7.0$. The BOD and COD were highest in waste-water from ethanol distillation plants among others. (2) Bacterial and yeast counts were $4{\times}10^4-1{\times}10^9,\;2{\times}10^2-7{\times}10^4/ml$ in waste-water. (3) Bacteria grew better in pulp waste and yeasts in beer, bread yeast, and ethanol distillation waste. (4) Saccharomyces cerevisiae SAFM 1008 and Candida curvata SAFM 70 were the most suitable microorganisms for clarification of ethanol distillation waste. (5) When liquid and solid waste from ethanol distillation were treated with microbial cellulase, xylanase, and pectinase, solid waste was reduced by 36%, soluble waste was increased, and recuding sugar content was increased by 1.3 times which provided better medium than untreated waste for cultivation of yeasts. (6) Optimum growth conditions of the two species of yeast in ethanol distillation waste were pH 5.0, $30^{\circ}C$, and addition of 0.2% of urea, 0.1% of $KH_2PO_4$ and 0.02% of $MgSO_4$. (7) Minimum number of yeast for proper propagation was $1.8{\times}10^5/ml$. (8) C. curvata70 was better than cerevisae for the production of yeast cells from ethanol distillation waste treated with microbial enzymes. (9) S. cerevisiae produced 16 g of dried cell per 1,000ml of ethanol distillation waste and reduced BOD by 46%. C. curvata produced 17.6g of dried cell and reduced BOD by 52% at the same condition. (10) Yeast cells produced from the ethanol distillation waste contained 46-52% protein indicating suitability as a protein source for animal feed.

  • PDF

Chemical Composition of Prunus mume Flower Varieties and Drying Method (매화의 품종과 건조방법에 따른 화학성분 조성)

  • Kim Yong-Doo;Jeong Myung-Hwa;Koo I-Ran;Cho In-Kyung;Kwak Sang-Ho;Kim Bo-Eun;Kim Ki-Man
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.186-191
    • /
    • 2006
  • Prunus mume is extensively cultivated as a fruit and medicinal plant in Korea. Recently, prunus mume has a pressing problem with an increase of prunus mume cultivation area in southern part in Korea. Chemical properties of prunus mume flower to determine the optimum processing varieties for tea were investigated. Three kinds of samples treated with fresh, freeze dry and shade dry were used. The content of moisture, crude ash, crude protein, crude fiber, crude fat and nitrogen free extract of prunus mume flower varieties were to $82{\sim}85%,\;0.2{\sim}0.6%,\;2.5{\sim}3.1%,\;2.5{\sim}3.1%,\;0.6{\sim}0.8%\;and\;10{\sim}11%$ respectively. The main component of free sugars in prunus mume flower was glucose and those of organic acids were citric and malic acids. 17 kinds of amino acids were determined from prunus mume flower. The total amino acid contents of Cheongchuk, Baeagaha and Goseong were 760.47 mg%, 624.01 mg% and 807.41 mg%, respectively. Aspartic acid, glutamic acid and lysine were the major component in 3 cultivars. The content of K was much higher than Ca, Mg, Na, fe and Zn. The major fatty acids of prunus mume flower were myristic acid, palmitoleic acid me oleic acid. As a result of analysis, there were no significant differences among the three cultivars of prunus mume flower and drying method.

Uptake and Recovery of Urea-15N Blended with Different Rates of Composted Manure (퇴비의 혼합 시비율에 따른 Urea-15N의 이용율 및 회수율)

  • Ro, Hee-Myong;Choi, Woo-Jung;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.376-383
    • /
    • 2003
  • To utilize composts more efficiently, combining composts with fertilizer to meet crop requirements is an appealing alternative. A pot experiment was conducted to study the effect of application rate of composted pig manure blended with fertilizer on the availability and loss of fertilizer-N. Chinese cabbage (Brassica campestris L. cv. Samjin) plants were cultivated for 30 and 60 days. 15N-Labeled urea ($5.24\;^{15}N\;atom\;%$) was added to soil at $450mg\;N\;kg^{-1}$, and unlabeled compost ($0.37\;^{15}N\;atom\;%$) was added at 0, 200, 400, and $600mg\;N\;kg^{-1}$. The amount of plant-N derived from urea was not affected by compost application at rate of $200mg\;N\;kg^{-1}$. However, compost application at 400 and $600mg\;N\;kg^{-1}$ significantly (P<0.05) increased plant assimilation of N from urea irrespective of sampling time, probably because of physicochemical changes in the soil properties allowing urea-N to be assimilated more efficiently. The amount of immobilized urea-N increased with increasing rate of compost application at both growth periods, as the results of increased microbial activities using organic C in the compost. Total recovery of urea-N (as percentage of added N) by Chinese cabbage and soil also increased with increasing rate of compost from 71.5 to 95.6% and from 67.0 to 88.2% at the 30- and 60-days of growth, respectively. These results suggest that increasing rate of compost blending increases plant uptake of fertilizer-N and enhances immobilization of fertilizer-N, which leads to decrease in loss of fertilizer-N. However, information about the fate of immobilized N during future crop cultivation is necessary to verify long-term effect of compost blending.

Study on the Interpretation of the Features Affacting to the N-supplying Capability of Field Soils to Corn in Pennsylvania (Pennsylvania주 옥수수재배지(栽培地) 토양(土壤)의 질소공급능력(窒素供給能力)에 영향(影響)을 미치는 요인분석(要因分析))

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.26-37
    • /
    • 1992
  • Fifty-five field experiments were conducted in order to find out some useful indices for the prediction of N-supplying capability(NSC) of soils under cultivation of corn in Pennsylvania over 3 years from 1986. Contents of $NO_3-N$, absorbance at 200 nm of the extract from soil with 0.01M $NaHCO_3$ were identified to be used as indices before planting. Methods for the estimation of organic nitrogen available later in the growing season(KCLA-N, PBBA-N, UV260 nm absorbance of $NaHCO_3$ extract) were not to be used as good indices individually, but when those are combined together with inorganic $NO_3-N$ showed a highly significant correlationship with the NSC. The year of an even distribution of rainfall, 1987, gave the highest significant correlationship between NSC and the indices. For soils of the same texture with slightly different physical properties, combined indices obtained from physico-chemical factors improved the degree of predictability when the grades of soil slope, depth of Ap were considered at the same time. More futher researches such as this need to be done before any conclusive result can be drawn.

  • PDF

Mycorrhizae, mushrooms, and research trends in Korea (균근과 버섯 그리고 국내 연구동향)

  • An, Gi-Hong;Cho, Jae-Han;Han, Jae-Gu
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Mycorrhiza refers to the association between a plant and a fungus colonizing the cortical tissue of the plant's roots during periods of active plant growth. The benefits afforded by plants from mycorrhizal symbioses can be characterized either agronomically, based on increased growth and yield, or ecologically, based on improved fitness (i.e., reproductive ability). In either case, the benefit accrues primarily because mycorrhizal fungi form a critical linkage between plant roots and the soil. The soilborne or extramatrical hyphae take up nutrients from the soil solution and transport them to the root. This mycorrhizae-mediated mechanism increases the effective absorptive surface area of the plant. There are seven major types of mycorrhizae along with mycoheterotrophy: endomycorrhizae (arbuscular mycorrhizae, AM), ectomycorrhizae (EM), ectendomycorrhizae, monotropoid, arbutoid, orchid, and ericoid. Endomycorrhizal fungi form arbuscules or highly branched structures within root cortical cells, giving rise to arbuscular mycorrhiza, which may produce extensive extramatrical hyphae and significantly increase phosphorus inflow rates in the plants they colonize. Ectomycorrhizal fungi may produce large quantities of hyphae on the root and in the soil; these hyphae play a role in absorption and translocation of inorganic nutrients and water, and also release nutrients from litter layers by producing enzymes involved in mineralization of organic matters. Over 4,000 fungal species, primarily belonging to Basidiomycotina and to a lesser extent Ascomycotina, are able to form ectomycorrhizae. Many of these fungi produce various mushrooms on the forest floor that are traded at a high price. In this paper, we discuss the benefits, nutrient cycles, and artificial cultivation of mycorrhizae in Korea.

Correlation Model between Growth Characteristics and Soil Factors of Tulipa edulis Habitat (산자고 자생지의 생육특성 및 토양요인간 상관모형)

  • You Ju-Han;Jung Sung-Gwan;Lee Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.180-188
    • /
    • 2006
  • This study was carried out to offer the raw data on the method of cultivation and ecological characteristic by systematical analysing habitat environment of Tulipa edulis that was expected as medicinal and ornamental resource. The habitat environment was that the altitude was 245 m, the aspect of south, the size of approximately $49\;m^2$, and there was analyzed that Tulipa edulis grew wild in the dryly sunny spot. The vascular plants were summarized as 62 taxa; 28 families, 59 genera, 50 species, 11 varieties and 1 forms, and the resource plants were classified that there were 23 taxa of ornamental plants(37.1%), 43 taxa of edible plants(69.4%), 34 taxa of medicinal plants(54.8%) and 29 taxa of others(46.8%). In the results of soil factors analysis, there showed that acidity was pH 4.9, organic matter content of 4.9%, available $P_{2}O_{5}$ of 3.6 mg/kg, exchangeable $K^+$ of $0.5\;cmol^{+}/kg$, exchangeable $Ca^{2+}$ of $3.0\;cmol^{+}/kg$, exchangeable $Mg^{2+}$ of $0.8\;cmol^{+}/kg$, cation exchange capacity(C.E.C) of $12.3\;cmol^{+}/kg$ and electrical conductivity(EC) of 0.3 dS/m. In the results of correlation analysis between soil factors, exchangeable $Ca^{2+}$ and C.E.C were highly correlative. The growth characteristics of Tulipa edulis were surveyed that height was 7.6 cm, leaf width of 0.6 cm, leaf length of 12.7 cm, flower width of 2.8 cm, peduncle of 5.4 cm and chlorophyll of $34.7\;{\mu}g\;mg^{-1}$. In the results of correlation analysis between growth characteristics, height and peduncle were highly correlative. In the results of correlation analysis between soil factors and growth characteristics, exchangeable $K^{+}$ and leaf length were high relativity but they were confirmed negative relation. In the results of growth model analysis, R-square of leaf width and exchangeable $K^{+}$ was some 86.4% and that of chlorophyll and exchangeable $K^{+}$ was some 83.7%.

A Study on the Fertigation of Swine Liquid Manure for Broccoli and Celely Western Vegetables (돈분뇨 발효액을 이용한 녹색꽃양배추 및 양미나리 관비재배 실용화 연구)

  • Kim, Won-Bae;Bae, Won-Ho;Jang, Suk-Woo;Kwon, Young-Gi;Heo, Kweon;Lim, Sang-Cheol
    • Korean Journal of Plant Resources
    • /
    • v.15 no.1
    • /
    • pp.50-56
    • /
    • 2002
  • This study was carried out to optimize the fertigation method using fermented swine liquid manure for the growth of two western vegetables, broccoli and celery. Plants were grown in a rain-shelter house and fertilized with a range of dilutions(efflux 5 dilution=Ef. 5, efflux 10 dilution=Ef. 10, efflux 25 dilution=Ef. 25, and efflux 50 dilution=Ef. 50) of the liquid manure or with conventional application of N : P$_2$O$\_$5/ : K$_2$O = 200 : 70 : 500kg/ha for broccoli, 250 : 210 : 240 kg/ha for celery as controls. After harvest, soil pH and K content decreased after using a high concentration of the liquid manure, Ef. 5, than after treatment with weaker concentrations at Ef. 25 and Ef. 50. On the other hand, soil electrical conductivity, content of P$_2$O$\_$5/, organic matter, total nitrogen, and NO$_3$-N at Ef. 5 increased as concentration of swine liquid manure increased. After harvest, available P$_2$O$\_$5/ in plant tissue did not differ significantly between any of the treatments. In broccoli, the lower concentration (Ef. 50) of swine liquid manure increased flowering over the other treatments, perhaps because the level of absorption into the plants is higher with lower concentration. The amounts of K and Ca in plant tissue were greatest after Ef. 25 and Ef. 50 treatments. Plant growth was best at Ef. 50 in broccoli, head height, head width, and head weight were the best with Ef. 25 and Ef. 50 treatments after harvest. In celery, leaf length was greater after Ef. 25 and Ef. 50 treatments than any other treatments. Total yield of celery of Ef. 25 and Ef. 50 treatments was twice that of conventional cultivation. On the other hand, yield severely decreased after application of high-concentration treatment at Ef. 5. In conclusion, fertigation of swine liquid manure, diluted in the range of Ef. 25 to Ef. 50, could improve yield and quality in broccoli and celery.

Antimicrobial and Antioxidant Activity of the Discorea alata L. (Discorea alata L.의 항균 및 항산화 활성)

  • Kwon, Jeong-Eun;Kwon, Jung-Bae;Kwun, In-Sook;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.283-288
    • /
    • 2010
  • Yam (Dioscorea spp.) has been used as important edible and medicinal natural resource in worldwide and D. alata L. is most popular nourishment among the yam. In this study the composition, color, antioxidation and antimicrobial activity of D. alata Gyeongbuk No. 6 (GB-6), which was established in Gyeongbuk Agricultural Research & Extension Services, Andong, Korea, was compared to those of D. batatas Gyeongbuk No. 1 (GB-1), a major domestic cultivation species. Water content of GB-6 was $78.02{\pm}0.16%$, which is slightly lower than that of GB-1 ($82.6{\pm}0.07%$). The contents of crude protein, crude fat, crude fiber and ash of GB-6 were 0.95, 0.26, 0.85 and 0.70%, whereas those of GB-1 were 1.58, 0.15, 1.39 and 0.88%, respectively. Analysis of color using colormeter showed that the GB-6 is slight dark-yellow than GB-1, and total polyphenol content of GB-6 was 2-fold higher compared than that of GB-1. Sequential organic solvent fractions from methanol extract of GB-6 showed that the ethylacetate fraction has highest total polyphenol ($144.1{\pm}3.20\;mg/g$). Determination of antioxidation activity showed that the ethylacete fraction and water fraction has strong DPPH radical scavenging activity ($IC_{50}=78.32\;{\mu}g/mL$) and reducing power, respectively. In antimicrobial activity assay, the n-hexane and ethylacetate fraction showed antibacterial activity against B. subtilis, L.monocytogenes, S. epidermidis, S. aureus, P. vulgaris, and S. typhimurium. These results provide the possibility of domestic cultivated D. alata GB-6 as a healthy food.