Uptake and Recovery of Urea-15N Blended with Different Rates of Composted Manure

퇴비의 혼합 시비율에 따른 Urea-15N의 이용율 및 회수율

  • Ro, Hee-Myong (School of Agricultural Biotechnology, Seoul National University) ;
  • Choi, Woo-Jung (School of Agricultural Biotechnology, Seoul National University) ;
  • Yun, Seok-In (School of Agricultural Biotechnology, Seoul National University)
  • 노희명 (서울대학교 농생명공학부) ;
  • 최우정 (서울대학교 농생명공학부) ;
  • 윤석인 (서울대학교 농생명공학부)
  • Received : 2003.10.13
  • Accepted : 2003.12.04
  • Published : 2003.12.30

Abstract

To utilize composts more efficiently, combining composts with fertilizer to meet crop requirements is an appealing alternative. A pot experiment was conducted to study the effect of application rate of composted pig manure blended with fertilizer on the availability and loss of fertilizer-N. Chinese cabbage (Brassica campestris L. cv. Samjin) plants were cultivated for 30 and 60 days. 15N-Labeled urea ($5.24\;^{15}N\;atom\;%$) was added to soil at $450mg\;N\;kg^{-1}$, and unlabeled compost ($0.37\;^{15}N\;atom\;%$) was added at 0, 200, 400, and $600mg\;N\;kg^{-1}$. The amount of plant-N derived from urea was not affected by compost application at rate of $200mg\;N\;kg^{-1}$. However, compost application at 400 and $600mg\;N\;kg^{-1}$ significantly (P<0.05) increased plant assimilation of N from urea irrespective of sampling time, probably because of physicochemical changes in the soil properties allowing urea-N to be assimilated more efficiently. The amount of immobilized urea-N increased with increasing rate of compost application at both growth periods, as the results of increased microbial activities using organic C in the compost. Total recovery of urea-N (as percentage of added N) by Chinese cabbage and soil also increased with increasing rate of compost from 71.5 to 95.6% and from 67.0 to 88.2% at the 30- and 60-days of growth, respectively. These results suggest that increasing rate of compost blending increases plant uptake of fertilizer-N and enhances immobilization of fertilizer-N, which leads to decrease in loss of fertilizer-N. However, information about the fate of immobilized N during future crop cultivation is necessary to verify long-term effect of compost blending.

퇴비를 효율적으로 이용하면서 작물의 요구를 충족시키기 위해 화학비료를 혼합 시비하는 것은 하나의 효율적인 방법이 될 수 있다. 본 연구에서는 퇴비를 혼합 시비할 경우 화학비료 중 질소의 이용율과 손실에 미치는 영향을 구명하기 위해 포트실험을 하였다. 중질소로 표지된 요소 ($5.24\;^{15}N\;atom\;%$)를 $450mg\;N\;kg^{-1}$ 으로 모든 포트에 처리하였고 퇴비($0.37\;^{15}N\;atom\;%$)는 각각의 포트에 0, 200, 400, $600mg\;N\;kg^{-1}$으로 시비량을 달리하여 처리한 후에 배추 (Brassica campestirs L. cv. Samjin)를 30, 60일 동안 재배하였다. $200mg\;N\;kg^{-1}$의 퇴비를 처리했을 경우에, 배추가 흡수한 질소 중에서 처리한 요소로부터 유래한 양은 차이가 없었으나, 400과 $600mg\;N\;kg^{-1}$ 의 퇴비를 시비한 경우에는 그 양이 유의적으로 (P<0.05) 증가하였다. 퇴비의 시용으로 토양의 물리화학성이 향상되어 배추의 질소 이용이 증가하였기 때문이라고 판단하였다. 토양에서 부동화된 질소의 양 또한 퇴비의 시용율에 따라 증가하였는데, 이것은 퇴비의 유기탄소를 이용하는 미생물의 활성이 증가했기 때문이다. 배추와 토양에서 요소로부터 유래한 질소의 회수율은 퇴비 시용량에 따라 증가하였는데, 30일에는 71.5%에서 95.6%로 증가하였고, 60일에는 67.0%에서 88.2%로 증가하였다. 이 결과는 퇴비의 혼합 시비율이 증가함에 따라 식물 및 미생물에 의한 화학비료의 이용이 증가한다는 것을 보여주었다. 그러나 다음 작물을 재배하는 동안에 부동화된 질소가 어떻게 되는가에 대한 연구 또한 혼용 시용한 퇴비가 화학비료에 장기간 미치는 영향을 구명하기 위해서 필요하다.

Keywords

References

  1. Azam, F., A. Ldhi, and M. Ashraf. 1991. Interaction of $^{15}N$-labelled ammonium nitrogen with native soil during incubation and growth of maize (Zea mays L.). Soil Biol. Biochem. 23:473-477 https://doi.org/10.1016/0038-0717(91)90012-9
  2. Benitez, C., E. Bellido, J. L. Gonzalez, and M. Medina. 1998. Influence of pedological and climatic factors on nitrogen mineralization in soils treated with pig slurry compost. Bioresource Technol. 63:147-151 https://doi.org/10.1016/S0960-8524(97)00072-2
  3. Blankenau, K., H. W. Olfs, and H. Kuhlmann. 2000. Effect of microbial nitrogen immobilization during the growth period on the availability of nitrogen fertilizer for winter cereals. Biol. Fert. Soils 32:157-165 https://doi.org/10.1007/s003740000230
  4. Choi- W. J., S. A. Jin, S. M. Lee, H. M. Ro, and S. H. Yoo. 2001. Com uptake and microbial immobilization of $^{15}N$-labeled urea-N in soil as affected by composted pig manure. Plant Soil 235:1-9 https://doi.org/10.1023/A:1011896912888
  5. Choi, W. J., S. M. Lee, H. M. Ro, K. C. Kim, and S. H. Yoo. 2002. Natural $^{15}N$ abundances of maize and soil amended with urea and composted pig manure. Plant Soil 245:223-232 https://doi.org/10.1023/A:1020475017254
  6. Eghball, B. 2000. Nitrogen mineralization from field-applied beef cattle feedlot manure or compost. Soil Sci. Soc. Am. J. 64:2024-2030 https://doi.org/10.2136/sssaj2000.6462024x
  7. Fauci, M. F., and R. P. Dick. 1994. Soil microbial dynamics: short- and long-term effects of inorganic and organic nitrogen. Soil Sci. Soc. Am. J. 58:801-806 https://doi.org/10.2136/sssaj1994.03615995005800030023x
  8. Firestone, M. K. 1982. Biological denitrification. p. 289-326. In Stevenson F. J. (ed.) Nitrogen in Agricultural Soils, Agronomy No. 22. ASA, Wisconsin, USA
  9. Hadas, A., S. Feigenbaum, M. Sofer, J. A. E. Molina, and C. E. Clapp. 1993. Decomposition of nitrogen-15-labeled wheat and cellulose in soil: Modelling tracer dynamics Soil Sci. Soc. Am. J. 57:996-1001
  10. Hadas, A. and R. Portnoy. 1994. Nitrogen and carbon mineralization rates of composted manures incubated in soil. J. Environ. Qual. 23:1184-1189 https://doi.org/10.2134/jeq1994.00472425002300060008x
  11. Harper, L. A., R. R. Sharpe, G. W. Langdale, and J. E. Giddens. 1987. Nitrogen cycling in wheat crop: soil, Plant and aerial nitrogen transport. Agron. J. 79:965-973 https://doi.org/10.2134/agronj1987.00021962007900060004x
  12. Hauck, R. D. and J. M. Bremner. 1976. Use of tracers for soil and fertilizer nitrogen research. Adv. Agron. 28:219-260 https://doi.org/10.1016/S0065-2113(08)60556-8
  13. Honeycutt, C. W. 1999. Nitrogen mineralization from soil organic matter and crop residues: field validation of laboratory predictions. Soil Sci. Soc. Am. J. 63:134-141 https://doi.org/10.2136/sssaj1999.03615995006300010020x
  14. Jenkinson, D. S., R. H. Fox, and J. H. Rayner. 1985. Interactions between fertilizer nitrogen and soil nitrogen - the so called 'priming' effect. J. Soil Sci. 36:425-444 https://doi.org/10.1111/j.1365-2389.1985.tb00348.x
  15. Kandeler, E., and G. Eder. 1993. Effect of cattle slurry in grassland on microbial biomass and on activities of various enzymes. Biol. Fert. Soils 16:249-254 https://doi.org/10.1007/BF00369300
  16. Kuzyakov, Y., J. K. Friedel, and K. Stahr. 2000. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32:1485-1498 https://doi.org/10.1016/S0038-0717(00)00084-5
  17. Limaux, F., S. Recous, J. M. Meynard, and A. Guckert. 1999. Relationship between rate of crop growth at date of fertiliser N application and fate of fertiliser N applied to winter wheat. Plant Soil 214:49-59 https://doi.org/10.1023/A:1004629511235
  18. Patra, D. D., M. Anwar, and S. Chand. 2000. Integrated nutrient management and waste recycling for restoring soil fertility and productivity in japanese mint and mustard sequence in Uttar Pradesh, India Agric. Eco. Environ. 80:267-275 https://doi.org/10.1016/S0167-8809(00)00151-1
  19. Paul, J. W. and E. G. Beauchamp. 1993. Nitrogen availability for com in soils amended with urea, cattle slurry, and solid and composted manures. Can. J. Soil Sci. 73:253-266
  20. Poudel, D. D., W. R. Horwath, J. P. Mitchell, and S. R. Temple. 2001. Impacts of cropping systems on soil nitrogen storaee and loss. Agri. Syst. 68:253-268 https://doi.org/10.1016/S0308-521X(01)00011-7
  21. SAS/STAT user's guide, Version 6. 4th ed. Vol. 1. 1989. SAS Institute, North Carolina. USA
  22. Schlegel, A. J. 1992. Effect of composted manure on soil chemical properties and nitrogen use by grain sorghum. J. Prod. Agic. 5:153-157
  23. Sharpley, A. N., S. J. Smith, B. A. Stewart, and A. C. Mathers. 1984. Forms of P in soil receiving cattle feedlot waste. J. Environ. Qual. 13:211-215 https://doi.org/10.2134/jeq1984.00472425001300020007x
  24. Sikora, L. J., and N. K. Enkiri. 2001. Uptake of $^{15}N$ fertilizer in compost-amended soils. Plant Soil 235:65-73 https://doi.org/10.1023/A:1011855431544
  25. Stamatiadis, S., M. Werner, and M. Buchanan. 1999. Field assessment of soil quality as affected by compost and fertilizer application in a broccoli field (San Benito County, California). Appl. Soil. Ecol. 12:217-225 https://doi.org/10.1016/S0929-1393(99)00013-X
  26. Tester, C. F. 1990. Organic amendment effects on physical and chemical properties of a sandy soil. Soil Sci. Soc. Am. J. 54:827-83 https://doi.org/10.2136/sssaj1990.03615995005400030035x
  27. Weitz, A. M., E. Linder, S. Frolking, P. M. Crill, and M. Keller. 2001. $N_2O$ emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil Biol. Biochem. 33:1077-1093 https://doi.org/10.1016/S0038-0717(01)00013-X
  28. Wen, G., T. E. Bates, and R. P. Voroney. 1995. Evaluation of nitrogen availability in irradiated sewage sludge, sludge compost, and manure compost. J. Environ. Qual. 24:527-534 https://doi.org/10.2134/jeq1995.00472425002400030020x
  29. Westerman, R. L., and L. T, Kurtz. 1974. Isotopic and nonisotopic estimation of fertilizer nitrogen uptake by sudangrass in field experiment. Soil Sci. Soc. Am. Proc. 38:107-109 https://doi.org/10.2136/sssaj1974.03615995003800010033x
  30. Zaman, M., H. J. Di, K. C. Cameron, and C. M. Frampton. 1999. Gross nitrogen mineralization and nitrification rates and their relationship to enzyme activities and the soil microbial biomass in soils treated with dairy shed effluent and ammonium fertilizer at different water potential. Biol. Fert. Soils 29:178-186 https://doi.org/10.1007/s003740050542