• Title/Summary/Keyword: ordinary kriging

Search Result 104, Processing Time 0.024 seconds

염수침입 현상의 전기비저항 분석에 대한 지구통계기법의 응용

  • 심병완;정상용;김병우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.92-96
    • /
    • 2001
  • Although the problem of seawater intrusion at the coastal aquifer was recognized before over one hundred years at the coastal aquifer, much groundwater keep on being salinitized by several reasons such as groundwater exhaustion, coastalline change, and human activities. The horizontal and vertical electrical soundings and geostatistical methods were used to define the local characteristics of saltwater intrusion and to estimate the saltwater interface in the southeastern area of the Pusan City. The 24 points of the Schlumberger vertical electrical soundings(VES) to loom depth and the 2 lines of dipole-dipole horizontal soundings are peformed. The resistivity data have lognormal distributions. The horizontal extents of saline water intrusion were estimated from the inversion of horizontal prospecting data. Lognormal ordinary kriging is used in A-A' resistivity profiles on May and July because the data have stationary models in semivariograms. Lognormal IRF-k kriging is used for the isopleth maps using vertical resistivity data. The 10 ohm-m resistivity line on the isopleth maps of 21m, 30m, 50m, and 70m depth using resisitivity data measured in July is sifted to the east, cpomparing that of the isopleth maps measured in May. The kriged vertical and horizontal resistivity isopleth maps suggested that the geostatistical methods can be used to define the variation of earth resistivity distribution at the saltwater interface.

  • PDF

Application of Artificial Neural Network for estimation of daily maximum snow depth in Korea (우리나라에서 일최심신적설의 추정을 위한 인공신경망모형의 활용)

  • Lee, Geon;Lee, Dongryul;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.681-690
    • /
    • 2017
  • This study estimated the daily maximum snow depth using the Artificial Neural Network (ANN) model in Korean Peninsula. First, the optimal ANN model structure was determined through the trial-and-error approach. As a result, daily precipitation, daily mean temperature, and daily minimum temperature were chosen as the input data of the ANN. The number of hidden layer was set to 1 and the number of nodes in the hidden layer was set to 10. In case of using the observed value as the input data of the ANN model, the cross validation correlation coefficient was 0.87, which is higher than that of the case in which the daily maximum snow depth was spatially interpolated using the Ordinary Kriging method (0.40). In order to investigate the performance of the ANN model for estimating the daily maximum snow depth of the ungauged area, the input data of the ANN model was spatially interpolated using Ordinary Kriging. In this case, the correlation coefficient of 0.49 was obtained. The performance of the ANN model in mountainous areas above 200m above sea level was found to be somewhat lower than that in the rest of the study area. This result of this study implies that the ANN model can be used effectively for the accurate and immediate estimation of the maximum snow depth over the whole country.

Runoff Analysis using Spatially Distributed Rainfall Data (공간 분포된 강우를 이용한 유출 해석)

  • Lee, Jong-Hyeong;Yoon, Seok-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.3-14
    • /
    • 2005
  • Accurate estimation of the spatial distribution of rainfall is critical to the successful modeling of hydrologic processes. The objective of this study is to evaluate the applicability of spatially distributed rainfall data. Spatially distributed rainfall was calculated using Kriging method and Thiessen method. The application of spatially distributed rainfall was appreciated to the runoff response from the watershed. The results showed that for each method the coefficient of determination for observed hydrograph was $0.92\~0.95$ and root mean square error was $9.78\~10.89$ CMS. Ordinary Kriging method showed more exact results than Simple Kriging, Universal Kriging and Thiessen method, based on comparison of observed and simulated hydrograph. The coefncient of determination for the observed peak flow was 0.9991 and runoff volume was 0.9982. The accuracy of rainfall-runoff prediction depends on the extent of spatial rainfall variability.

Development of Prediction Model for Renewable Energy Environmental Variables Based on Kriging Techniques (크리깅 기법 기반 재생에너지 환경변수 예측 모형 개발)

  • Choy, Youngdo;Baek, Jahyun;Jeon, Dong-Hoon;Park, Sang-Ho;Choi, Soonho;Kim, Yeojin;Hur, Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.223-228
    • /
    • 2019
  • In order to integrate large amounts of variable generation resources such as wind and solar reliably into power grids, accurate renewable energy forecasting is necessary. Since renewable energy generation output is heavily influenced by environmental variables, accurate forecasting of power generation requires meteorological data at the point where the plant is located. Therefore, a spatial approach is required to predict the meteorological variables at the interesting points. In this paper, we propose the meteorological variable prediction model for enhancing renewable generation output forecasting model. The proposed model is implemented by three geostatistical techniques: Ordinary kriging, Universal kriging and Co-kriging.

A Study for Applicability of Cokriging Techniques for Estimating the Real Transaction Price of Land (토지 실거래가격 추정을 위한 공동 크리깅기법의 적용가능성 연구)

  • Choi, Jin Ho;Kim, Bong Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.55-63
    • /
    • 2015
  • The need for estimating the real transaction price of land is increasing in order to build foundation for transparent land transaction and fair taxation. This study looked into the applicability of cokriging combining real transaction price of land, altitude and gradient for effective price estimation on the points where the real transaction does not take place in the course of using the real transaction price of land. The real transaction price of land have been estimated using the real transaction materials of Yeongcheon, Gyeongsangbuk-do from January 2012 to June 2014, and the results have been compared with the estimation results of ordinary kriging. As a result of analyzing the mean error and root mean square error (RMSE) of the estimated price and 2,575 verification points, it was found that compared to ordinary kriging, cokriging results were more effective in terms of the real transaction price estimation and actualization. The reason that cokriging is more effective in the real transaction price estimation is because it takes account of altitude and gradient which are the forces influencing the land value.

Comparative Evaluation among Different Kriging Techniques applied to GOSAT CO2 Map for North East Asia (GOSAT 기반의 동북아시아 CO2 분포도에 적용된 크리깅 기법의 비교평가)

  • Choi, Jin Ho;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.879-890
    • /
    • 2011
  • The GOSAT (Greenhouse gases Observing SATellite) data provide new opportunities the most regionally complete and up-to-date assessment of $CO_2$. However, in practice, GOSAT records often suffer from missing data values mainly due to unfavorable meteorological condition in specific time periods of data acquisition. The aim of this research was to identify optimal spatial interpolation techniques to ensure the continuity of $CO_2$ from samples taken in the North East Asia. The accuracy among ordinary kriging (OK), universal kriging (UK) and simple kriging (SK) was compared based on the combined consideration of $R^2$ values, Root Mean Square Error (RMSE), Mean Error (ME) for variogram models. Cross validation for 1312 random sampling points indicate that the (UK) kriging is the best geostatistical method for spatial predictions of $CO_2$ in the East Asia region. The results from this study can be useful for selecting optimal kriging algorithm to produce $CO_2$ map of various landscapes. Also, data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the GOSAT sample data.

Spatial Downscaling Method for Use of GCM Data in A Mountainous Area (산악지역에 GCM 자료를 이용하기 위한 공간 축소방법 개발)

  • Kim, Soojun;Kang, Na Rae;Kim, Yon Soo;Lee, Jong So;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.115-125
    • /
    • 2013
  • This study established a methodology for the application of downscaling technique in a mountainous area having large spatial variations of rainfall and tried to estimate the change of rainfall characteristics in the future under climate change using the established method. The Namhan river basin, which is in the mountainous area of the Korean peninsula, has been chosen as the study area. Artificial Neural Network - Simple Kriging with varying local means (ANN-SKlm) has been built by combining artificial neural network, which is one of the general downscaling techniques, and SKlm technique, which can reflect the geomorphologic characteristics like elevation of the study area. The evaluation of SKlm technique was done by using the monthly rainfalls at six weather stations which KMA(Korea Meteorological Administration) is managing in the basin. The ANN-SKlm technique was compared with the Thiessen technique and ordinary kriging(OK) technique. According to the evaluation result of each technique the SKlm technique showed the best result.

GEOSTATISTICAL INTEGRATION OF HIGH-RESOLUTION REMOTE SENSING DATA IN SPATIAL ESTIMATION OF GRAIN SIZE

  • Park, No-Wook;Chi, Kwang-Hoon;Jang, Dong-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.406-408
    • /
    • 2006
  • Various geological thematic maps such as grain size or ground water level maps have been generated by interpolating sparsely sampled ground survey data. When there are sampled data at a limited number of locations, to use secondary information which is correlated to primary variable can help us to estimate the attribute values of the primary variable at unsampled locations. This paper applies two multivariate geostatistical algorithms to integrate remote sensing imagery with sparsely sampled ground survey data for spatial estimation of grain size: simple kriging with local means and kriging with an external drift. High-resolution IKONOS imagery which is well correlated with the grain size is used as secondary information. The algorithms are evaluated from a case study with grain size observations measured at 53 locations in the Baramarae beach of Anmyeondo, Korea. Cross validation based on a one-leave-out approach is used to compare the estimation performance of the two multivariate geostatistical algorithms with that of traditional ordinary kriging.

  • PDF

Spatial Distribution of the Physicochemical Characteristics of Spring Waters in Mt. Geumjung (금정산 용천수의 물리화학적 성질의 공간적 분포 특성)

  • 김문수;함세영;김광성;김성이;성익환;이병대
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.262-265
    • /
    • 2000
  • In order to estimate spatial physicochemical properties of the spring waters in the study area, spring waters at 57 sites were investigated for measuring ten items (temperature, pH, Eh, EC, TDS, DO, salinity, alkalinity, discharge rate, and surface elevation), To compare each component with one another, regression analysis was carried out. Kriging was used to estimate the spatial characteristics and continuity of data in the study area. To solve kriging equation, the semivariogram was calculated using geostatistical software GS$^{+}$(version 3.1). As a result of semivariogram analysis, the data of nine components but surface elevation could be assumed as stationary random function, and ordinary kriging method was used for making contour maps.s.

  • PDF

Spatial analysis of Design storm depth using Geostatistical (지구통계학적 기법을 이용한 설계호우깊이 공간분석)

  • Ahn, Sang Jin;Lee, Hyeong Jong;Yoon, Seok Hwan;Kwark, Hyun Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1047-1051
    • /
    • 2004
  • The design storm is a crucial element in urban drainage design and hydrological modeling. The total rainfall depth of a design storm is usually estimated by hydrological frequency analysis using historic rainfall records. The different geostatistical approaches (ordinary kriging, universal kriging) have been used as estimators and their results are compared and discussed. Variogram parameters, the sill, nugget effect and influence range, are analysis. Kriging method was applied for developing contour maps of design storm depths In bocheong stream basin. Effect to utilize weather radar data and grid-based basin model on the spatial variation characteristics of storm requires further study.

  • PDF