DOI QR코드

DOI QR Code

Application of Artificial Neural Network for estimation of daily maximum snow depth in Korea

우리나라에서 일최심신적설의 추정을 위한 인공신경망모형의 활용

  • Lee, Geon (Department of Civil Engineering, Hongik University) ;
  • Lee, Dongryul (Center of Disaster Research and Hydrologic Data Center Using Radar Measurement, Korea Institute of Construction Technology) ;
  • Kim, Dongkyun (Department of Civil Engineering, Hongik University)
  • 이건 (홍익대학교 토목공학과) ;
  • 이동률 (한국건설기술연구원 수문레이더 재해연구.데이터센터) ;
  • 김동균 (홍익대학교 토목공학과)
  • Received : 2017.07.25
  • Accepted : 2017.08.25
  • Published : 2017.10.31

Abstract

This study estimated the daily maximum snow depth using the Artificial Neural Network (ANN) model in Korean Peninsula. First, the optimal ANN model structure was determined through the trial-and-error approach. As a result, daily precipitation, daily mean temperature, and daily minimum temperature were chosen as the input data of the ANN. The number of hidden layer was set to 1 and the number of nodes in the hidden layer was set to 10. In case of using the observed value as the input data of the ANN model, the cross validation correlation coefficient was 0.87, which is higher than that of the case in which the daily maximum snow depth was spatially interpolated using the Ordinary Kriging method (0.40). In order to investigate the performance of the ANN model for estimating the daily maximum snow depth of the ungauged area, the input data of the ANN model was spatially interpolated using Ordinary Kriging. In this case, the correlation coefficient of 0.49 was obtained. The performance of the ANN model in mountainous areas above 200m above sea level was found to be somewhat lower than that in the rest of the study area. This result of this study implies that the ANN model can be used effectively for the accurate and immediate estimation of the maximum snow depth over the whole country.

본 연구에서는 우리나라 전역에 대하여 인공신경망 기법을 사용하여 일최심신적설을 추정하였다. 인공신경망 모형 구조를 시행 착오법을 이용하여 설계한 결과, 입력자료는 일 최저 기온, 일 평균 기온, 강수량으로 정하였고, 은닉층과 노드의 수는 각각 1층, 10개로 정하였다. 관측값을 인공신경망의 입력자료로 활용하는 경우, 교차검증 상관계수는 0.87로 Ordinary Kriging기법을 활용하여 일최신심적설을 공간보간한 경우의 교차검증상관계수인 0.40보다 크게 높았다. 미계측 지역의 일최심신적설을 추정하는 경우의 인공신경망 모형의 성능을 알아보기 위하여 인공신경망 모형의 입력자료들을 Ordinary Kriging으로 공간보간하여 일최심신적설을 추정하였다. 이 경우 교차검증 상관계수는 0.49였다. 또한 해발 고도 200 m 이상의 산지에서의 인공신경망의 성능은 나머지 지역인 평지에서의 성능보다 다소 떨어짐을 확인하였다. 본 연구의 이러한 결과는 우리나라 전역에 걸친 정확한 적설량의 즉각적인 산정에 인공신경망 모형이 효과적으로 활용될 수 있음을 의미한다.

Keywords

References

  1. Bras, R. L. (1990). "Hydrology." pp. 248-256.
  2. Broxton, P. D., Dawson, N., and Zeng, X. (2016). "Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth." Earth and Space Science, Vol. 3, No. 6, pp. 246-256. https://doi.org/10.1002/2016EA000174
  3. Brun, E., David, P., Sudul, M., and Brunot, G. (1992). "A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting." Journal of Glaciology, Vol. 38, pp. 13-22. https://doi.org/10.1017/S0022143000009552
  4. Cao, Y., Yang, X., and Zhu, X. (2008). "Retrieval snow depth by artificial neural network methodology from integrated AMSR-E and In-situ data-A case study in Qinghia-Tibet Plateau." Chinese Geographical Science, Vol. 18, pp. 356-360. https://doi.org/10.1007/s11769-008-0356-2
  5. Chang, A. T. C., Foster, J. L., and Hall, D. K. (1987). "Nimbus-7 SMMR derived global snow cover parameters." Annals of Glaciology, Vol. 9, pp. 39-44. https://doi.org/10.1017/S0260305500000355
  6. Cho, H., Kim, D., Olivera, F., and Guikema, S. D. (2011). "Enhanced speciation in particle swarm optimization for multi-modal problems." European Journal of Operational Research, Vol. 213, No. 1, pp. 15-23. https://doi.org/10.1016/j.ejor.2011.02.026
  7. Czyzowska-Wisniewski, E. H., Van Leeuwen, W. J. D., Hirschboeck, K. K., Marsh, S. E., and Wisniewski, W. T. (2014). "Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network." Remote Sensing of Environment, Vol. 156, pp. 403-417.
  8. Daliy, C. (2006). "Guidelines for assessing the suitability of spatial climate data set." International Journal of Climatology, Vol. 26, pp. 707-721. https://doi.org/10.1002/joc.1322
  9. Davis, D. T., Chen, Z., Tsang, L., Hwang, J.-N., and Chang, A. T. C. (1993). "Retrieval of snow parameters by iterative inversion of a neural network." IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, pp. 842-852. https://doi.org/10.1109/36.239907
  10. Dewey, K. F. (1977). "Daily maximum and minimum temperature forecasts and the influence of snow cover." American Meteorological Society, Vol. 105, pp. 1594-1597.
  11. Dingman, S. L. (2002). "Physical hydrology." Prentice Hall, pp. 166-218.
  12. Dobreva, I. D., and Klein, A. G. (2011). "Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance." Remote Sensing of Environment, Vol. 115, pp. 3355-3366. https://doi.org/10.1016/j.rse.2011.07.018
  13. Gan, T. Y., Kalinga, O., and Singh, P. (2009). "Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions." Remote Sensing of Environment, Vol. 113, pp. 919-927. https://doi.org/10.1016/j.rse.2009.01.004
  14. Josberger, E. G., and Mognard, N. M. (2002). "A passive microwave snow depth algorithm with a proxy for snow metamorphism." Hydrological Processes, Vol. 16, pp. 1557-1568. https://doi.org/10.1002/hyp.1020
  15. Judson, A., and Doesken, N. (2000), "Density of freshly fallen snow in the central rocky mountains." Bulletin of the American Meteorological Society, Vol. 81, pp. 1577-1587. https://doi.org/10.1175/1520-0477(2000)081<1577:DOFFSI>2.3.CO;2
  16. Kim, Y. S., Kang, N. R., Kim, S. J., and Kim, H. S. (2013). "Evaluation for snowfall depth forecasting using neural network and multiple regression models." Journal of Kosham, Vol. 13, pp. 269-280.
  17. Kim, Y. S., Kim, S. J., Kang, N. R., Kim, T. G., and Kim, H. S. (2014). "Estimation of frequency based snowfall depth considering climate change using neural network." Journal of Korean Society of Hazard Mitigation, Vol. 14, pp. 97-107. https://doi.org/10.9798/KOSHAM.2014.14.2.97
  18. Kondo, J., and Yamazaki, T. (1990). "A prediction model for snowmelt, snow surface temperature and freezing depth using a heat balance method." American Meteorological Society, Vol. 5, pp. 375-384.
  19. Kunzi, K., Patil, S., and Rott, H. (1982). "Snow-cover parameters retrieved from Nimbus-7 Scanning multichannel microwave radiometer (SMMR) data." IEEE Transactions on Geoscience and Remote Sensing, Vol. 20, pp. 452-467.
  20. Lee, J.-J., Jung, Y.-H., and Lee, S.-W. (2007). "A study on the evaluation of probable snowfall depth in Korea." Journal of The Korean Society of Hazard Mitigation, Vol. 7, pp. 53-64.
  21. Lee, Y. K., Lee, C. J., and Ahn, S. G. (2015). "Estimation of freshly fallen snow unit weight and maximum probable snow load." Journal of Korean Society of Hazard Mitigation, Vol. 15, pp. 47-55.
  22. Liang, J., Liu, X., Huang, K., Li, X., Shi, X., Chen, Y., and Li, J. (2015). "Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance." Remote Sensing of Environment, Vol. 156, pp. 500-509. https://doi.org/10.1016/j.rse.2014.10.016
  23. Meloysund, V., Leira, B., Hoiseth, K. V., and Liso, K. R. (2007). "Predicting snow density using meteorological data." Meteorological Applications, Vol. 14, pp. 413-423. https://doi.org/10.1002/met.40
  24. Mitchell, T. M. (1997). "Machine learning." McGraw-Hill Science/ Engineering/Math, pp. 81-108.
  25. New, M., Hulme, M., and Jones, P. (1999). "Representing twentiethcentury space-Time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology." American Meteorological Society, Vol. 12, pp. 829-856.
  26. Oh (2008). "Pattern recognition." Kyobo, pp. 1-15, 95-132.
  27. Park, H. S., Jeong, S. M., and Chung, G. H. (2014). "Frequency analysis of future fresh snow days and maximum fresh snow depth using artificial neural network under climate change scenarios." Journal of Korean Society of Hazard Mitigation, Vol. 14, pp. 365-377. https://doi.org/10.9798/KOSHAM.2014.14.6.365
  28. Pulliainen, J. T., Grandell, J., and Hallikainen, M. T. (1999). "HUT snow emission model and its applicability to snow water equivalent retrieval." IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, pp. 1378-1390. https://doi.org/10.1109/36.763302
  29. Rashid, T. (2016). "Make your own neural network : a gentle journey through the mathematics of neural networks, and making your own using the Python computer language." Createspace Independent Publishing Platform, pp. 43.
  30. Richard, O. D., Peter, E. H., and David, G. S. (2001). "Pattern classification."
  31. Rigol, J. P., Jarvism, C. H., and Stuart, N. (2001). "Artificial neural networks as a tool for spatial interpolation." International Journal of Geographical Information Science, Vol. 15, pp. 323-343. https://doi.org/10.1080/13658810110038951
  32. Roebber, P., Butt, M. R., and Reinke, S. J. (2007). "Realtime forecasting of snowfall using a neural network." American Meteorological Society, Vol. 22, pp. 676-684.
  33. Roy, V., Goita, K., Royer, A., Walker, A. E., and Goodison, B. E. (2004). "Snow water equivalent retrieval in a Canadian boreal environment from microwave measurements using the HUT snow emission model." IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, pp. 1850-1859. https://doi.org/10.1109/TGRS.2004.832245
  34. Samaneh, G.-M., Ali, F., and Ruhoolah, T.-M. (2016). "Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran." Cold Regions Science and Technology, Vol. 122, pp. 26-35. https://doi.org/10.1016/j.coldregions.2015.11.004
  35. Sun, C., Cheng, H.-D., McDonnel, J. J., and Neale, C. M. U. (1995). "Identification of mountain snow cover using SSM/I and artificial neural network." International Conference on Acoustics, Speech, and Signal Processing, Vol. 5, pp. 3451-3454.
  36. Tedesco, M., Pulliainen, J., Takala, M., Hallikainen, M., and Pampaloni, P. (2004). "Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data." Remote Sensing of Environment, Vol. 90, pp. 76-85. https://doi.org/10.1016/j.rse.2003.12.002
  37. Witten, I. H., Frank, E., and Hall, M. A. (2011), "Data mining." Morgan Kaufmann, pp. 39-60.
  38. Yoo, I., and Jung, S. (2015), "Diagnosis and improvement of damage cause of heavy snow in Korea." The Magazine of Korean Society of Hazard Mitigation, Vol. 15, pp. 29-33.