References
- Bras, R. L. (1990). "Hydrology." pp. 248-256.
- Broxton, P. D., Dawson, N., and Zeng, X. (2016). "Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth." Earth and Space Science, Vol. 3, No. 6, pp. 246-256. https://doi.org/10.1002/2016EA000174
- Brun, E., David, P., Sudul, M., and Brunot, G. (1992). "A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting." Journal of Glaciology, Vol. 38, pp. 13-22. https://doi.org/10.1017/S0022143000009552
- Cao, Y., Yang, X., and Zhu, X. (2008). "Retrieval snow depth by artificial neural network methodology from integrated AMSR-E and In-situ data-A case study in Qinghia-Tibet Plateau." Chinese Geographical Science, Vol. 18, pp. 356-360. https://doi.org/10.1007/s11769-008-0356-2
- Chang, A. T. C., Foster, J. L., and Hall, D. K. (1987). "Nimbus-7 SMMR derived global snow cover parameters." Annals of Glaciology, Vol. 9, pp. 39-44. https://doi.org/10.1017/S0260305500000355
- Cho, H., Kim, D., Olivera, F., and Guikema, S. D. (2011). "Enhanced speciation in particle swarm optimization for multi-modal problems." European Journal of Operational Research, Vol. 213, No. 1, pp. 15-23. https://doi.org/10.1016/j.ejor.2011.02.026
- Czyzowska-Wisniewski, E. H., Van Leeuwen, W. J. D., Hirschboeck, K. K., Marsh, S. E., and Wisniewski, W. T. (2014). "Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network." Remote Sensing of Environment, Vol. 156, pp. 403-417.
- Daliy, C. (2006). "Guidelines for assessing the suitability of spatial climate data set." International Journal of Climatology, Vol. 26, pp. 707-721. https://doi.org/10.1002/joc.1322
- Davis, D. T., Chen, Z., Tsang, L., Hwang, J.-N., and Chang, A. T. C. (1993). "Retrieval of snow parameters by iterative inversion of a neural network." IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, pp. 842-852. https://doi.org/10.1109/36.239907
- Dewey, K. F. (1977). "Daily maximum and minimum temperature forecasts and the influence of snow cover." American Meteorological Society, Vol. 105, pp. 1594-1597.
- Dingman, S. L. (2002). "Physical hydrology." Prentice Hall, pp. 166-218.
- Dobreva, I. D., and Klein, A. G. (2011). "Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance." Remote Sensing of Environment, Vol. 115, pp. 3355-3366. https://doi.org/10.1016/j.rse.2011.07.018
- Gan, T. Y., Kalinga, O., and Singh, P. (2009). "Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions." Remote Sensing of Environment, Vol. 113, pp. 919-927. https://doi.org/10.1016/j.rse.2009.01.004
- Josberger, E. G., and Mognard, N. M. (2002). "A passive microwave snow depth algorithm with a proxy for snow metamorphism." Hydrological Processes, Vol. 16, pp. 1557-1568. https://doi.org/10.1002/hyp.1020
- Judson, A., and Doesken, N. (2000), "Density of freshly fallen snow in the central rocky mountains." Bulletin of the American Meteorological Society, Vol. 81, pp. 1577-1587. https://doi.org/10.1175/1520-0477(2000)081<1577:DOFFSI>2.3.CO;2
- Kim, Y. S., Kang, N. R., Kim, S. J., and Kim, H. S. (2013). "Evaluation for snowfall depth forecasting using neural network and multiple regression models." Journal of Kosham, Vol. 13, pp. 269-280.
- Kim, Y. S., Kim, S. J., Kang, N. R., Kim, T. G., and Kim, H. S. (2014). "Estimation of frequency based snowfall depth considering climate change using neural network." Journal of Korean Society of Hazard Mitigation, Vol. 14, pp. 97-107. https://doi.org/10.9798/KOSHAM.2014.14.2.97
- Kondo, J., and Yamazaki, T. (1990). "A prediction model for snowmelt, snow surface temperature and freezing depth using a heat balance method." American Meteorological Society, Vol. 5, pp. 375-384.
- Kunzi, K., Patil, S., and Rott, H. (1982). "Snow-cover parameters retrieved from Nimbus-7 Scanning multichannel microwave radiometer (SMMR) data." IEEE Transactions on Geoscience and Remote Sensing, Vol. 20, pp. 452-467.
- Lee, J.-J., Jung, Y.-H., and Lee, S.-W. (2007). "A study on the evaluation of probable snowfall depth in Korea." Journal of The Korean Society of Hazard Mitigation, Vol. 7, pp. 53-64.
- Lee, Y. K., Lee, C. J., and Ahn, S. G. (2015). "Estimation of freshly fallen snow unit weight and maximum probable snow load." Journal of Korean Society of Hazard Mitigation, Vol. 15, pp. 47-55.
- Liang, J., Liu, X., Huang, K., Li, X., Shi, X., Chen, Y., and Li, J. (2015). "Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance." Remote Sensing of Environment, Vol. 156, pp. 500-509. https://doi.org/10.1016/j.rse.2014.10.016
- Meloysund, V., Leira, B., Hoiseth, K. V., and Liso, K. R. (2007). "Predicting snow density using meteorological data." Meteorological Applications, Vol. 14, pp. 413-423. https://doi.org/10.1002/met.40
- Mitchell, T. M. (1997). "Machine learning." McGraw-Hill Science/ Engineering/Math, pp. 81-108.
- New, M., Hulme, M., and Jones, P. (1999). "Representing twentiethcentury space-Time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology." American Meteorological Society, Vol. 12, pp. 829-856.
- Oh (2008). "Pattern recognition." Kyobo, pp. 1-15, 95-132.
- Park, H. S., Jeong, S. M., and Chung, G. H. (2014). "Frequency analysis of future fresh snow days and maximum fresh snow depth using artificial neural network under climate change scenarios." Journal of Korean Society of Hazard Mitigation, Vol. 14, pp. 365-377. https://doi.org/10.9798/KOSHAM.2014.14.6.365
- Pulliainen, J. T., Grandell, J., and Hallikainen, M. T. (1999). "HUT snow emission model and its applicability to snow water equivalent retrieval." IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, pp. 1378-1390. https://doi.org/10.1109/36.763302
- Rashid, T. (2016). "Make your own neural network : a gentle journey through the mathematics of neural networks, and making your own using the Python computer language." Createspace Independent Publishing Platform, pp. 43.
- Richard, O. D., Peter, E. H., and David, G. S. (2001). "Pattern classification."
- Rigol, J. P., Jarvism, C. H., and Stuart, N. (2001). "Artificial neural networks as a tool for spatial interpolation." International Journal of Geographical Information Science, Vol. 15, pp. 323-343. https://doi.org/10.1080/13658810110038951
- Roebber, P., Butt, M. R., and Reinke, S. J. (2007). "Realtime forecasting of snowfall using a neural network." American Meteorological Society, Vol. 22, pp. 676-684.
- Roy, V., Goita, K., Royer, A., Walker, A. E., and Goodison, B. E. (2004). "Snow water equivalent retrieval in a Canadian boreal environment from microwave measurements using the HUT snow emission model." IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, pp. 1850-1859. https://doi.org/10.1109/TGRS.2004.832245
- Samaneh, G.-M., Ali, F., and Ruhoolah, T.-M. (2016). "Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran." Cold Regions Science and Technology, Vol. 122, pp. 26-35. https://doi.org/10.1016/j.coldregions.2015.11.004
- Sun, C., Cheng, H.-D., McDonnel, J. J., and Neale, C. M. U. (1995). "Identification of mountain snow cover using SSM/I and artificial neural network." International Conference on Acoustics, Speech, and Signal Processing, Vol. 5, pp. 3451-3454.
- Tedesco, M., Pulliainen, J., Takala, M., Hallikainen, M., and Pampaloni, P. (2004). "Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data." Remote Sensing of Environment, Vol. 90, pp. 76-85. https://doi.org/10.1016/j.rse.2003.12.002
- Witten, I. H., Frank, E., and Hall, M. A. (2011), "Data mining." Morgan Kaufmann, pp. 39-60.
- Yoo, I., and Jung, S. (2015), "Diagnosis and improvement of damage cause of heavy snow in Korea." The Magazine of Korean Society of Hazard Mitigation, Vol. 15, pp. 29-33.