• Title/Summary/Keyword: ordered structure

Search Result 386, Processing Time 0.024 seconds

Structure Analysis of $BaTiO_3$ Film on the MgO(001) Surface by Time-Of-Flight Impact-Collision Ion Scattering Spectroscopy

  • Yeon Hwang;Lee, Tae-Kun;Ryutaro Souda
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.17-17
    • /
    • 2002
  • Time-of-flight impact collision ion scattering spectroscopy (TOF-ICISS) was applied to study the geometrical structure of the epitaxially grown BaTiO₃ layers on the MgO(100) surface. Hetero-epitaxial BaTiO₃ layers can be deposited by the following steps: first thermal evaporation of titanium onto the MgO(100) surface in the atmosphere of oxygen at 400℃, secondly thermal evaporation of barium in the same manner, and finally annealing at 800℃. Well ordered perovskite BaTiO₃ was confirmed from the ICISS spectra and reflection high electron energy diffraction (RHEED) patterns. It was also revealed that BaTiO₃ had cubic structure with the same lattice parameter of bulk phase.

  • PDF

Amorphous Chalcogenide Solids Doped with Rare-Earth Element : Fluorescence Lifetimes and the Glass Structural Changes (희토류 원소 첨가 비정질 찰코지나이드 : 형광 수명과 유리 구조 변화의 관계)

  • Choi Yong Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.696-702
    • /
    • 2004
  • Lifetime of excited electronic states inside the 4f configuration of rare-earth elements embedded in chalcogenide glasses is very sensitive to medium-range structural changes of the host glasses. We have measured lifetimes of the 1.6$\mu\textrm{m}$ emission originating from Pr$\^$3+/ : ($^3$F$_3$, $^3$F$_4$)\longrightarrow$^3$H$_4$ transition in amorphous chalcogenide samples consisting of Ge, Sb, and Se elements. The measured lifetimes fumed out to have their maximum at the mean coordination number of -2.67, which arises accordingly from structural changes of the host glasses from 2 dimensional layers to 3 dimensional networks. This new finding supports that the so-called topological structure model together with chemically ordered network model is adequate to explain relationship between the emission properties of rare-earth elements and the medium-range structures of amorphous chalcogenide hosts with a large covalent bond nature. Thus, it is validated to predict site distribution and lifetime of rare-earth elements doped in chalcogenide glasses simply based on their mean coordination number.

Cathodic Electrochemical Deposition of Highly Ordered Mesoporous Manganese Oxide for Supercapacitor Electrodes via Surfactant Templating

  • Lim, Dongwook;Park, Taesoon;Choi, Yeji;Oh, Euntaek;Shim, Snag Eun;Baeck, Sung-Hyeon
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.148-154
    • /
    • 2020
  • Highly ordered mesoporous manganese oxide films were electrodeposited onto indium tin oxide coated (ITO) glass using sodium dodecyl sulfate (SDS) and ethylene glycol (EG) which were used as a templating agent and stabilizer for the formation of micelle, respectively. The manganese oxide films synthesized with surfactant templating exhibited a highly mesoporous structure with a long-range order, which was confirmed by SAXRD and TEM analysis. The unique porous structure offers a more favorable diffusion pathway for electrolyte transportation and excellent ionic conductivity. Among the synthesized samples, Mn2O3-SDS+EG exhibited the best electrochemical performance for a supercapacitor in the wide range of scan rate, which was attributed to the well-developed mesoporous structure. The Mn2O3 prepared with SDS and EG displayed an outstanding capacitance of 72.04 F g-1, which outperform non-porous Mn2O3 (32.13 F g-1) at a scan rate of 10 mV s-1.

Formation of the Fluorite Structure in the $\textrm{Y}_{0.8}\textrm{Ta}_{0.2}\textrm{O}_{1.7}$-MO(M=Ba, Sr, Ca and Mg) System ($\textrm{Y}_{0.8}\textrm{Ta}_{0.2}\textrm{O}_{1.7}$-MO(M=Ba, Sr, Ca 및 Mg)계에 있어서 형석구조의 생성)

  • Kim, Shin;Choi, Soon-Mok;Lee, Hong-Lim
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 1997
  • Formation of fluorite structure and other related crystal structures in the $Y_{0.8}Ta_{0.2}O_{1.7}$-MO(M=Ba, Sr, Ca and Mg) system has been studied $Ba_2YTaO_6,\;Sr_2YTaO_6$ of cubic perovskite type ordered structure anti $Y_2O_3$ of cubic structure were produced besides the defect fluorite structure when 4 moIob of BaO or SrO was added to $Y_{0.8}Ta_{0.2}O_{1.7}$ When CaO more than 8 nlol"/o was added to $Y_{0.8}Ta_{0.2}O_{1.7}$, monoclinic: $Ca_2YTaO$, and cubic $Y_2O_3$ were pri~tlucecl ;IS this sec:onci phases hesides the main fluorite truc,ture. Smglc phase of fluorite structure \vas 1)roduc:ciI when MgO was added up to 12 mol%, however, MgO appeared as the second phase besides the main fluorire structure when MgO was added more than lti moI0'. Consquently, it is considered rh;it the formation of tluorite structure is related with the formation of the cubic perovskite type ordered structure of $A_2(B'B")O_6$ as well as the cation radii of the additives.additives.

  • PDF

Controlled Growth of Layered Silver Stearate on 2D and 3D Surfaces

  • Lee, Seung-Joon;Han, Sang-Woo;Kim, Kwan
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.517-522
    • /
    • 2003
  • This investigation confirms that silver stearate consists of an infinite-sheet, two-dimensional, nonmolecular layered structure. Scanning electron microscopy, X-ray diffraction, and infrared spectroscopy reveal the following: plate-like morphology is identified from the SEM image, XRD peaks can be indexed to the (0k0) reflections of a layered structure, and infrared peaks show that alkyl chains are present in an all-trans conformational state with little or no significant gauche population. Based on these structural characteristics, we demonstrate that silver stearate, a prototype of layered organic-inorganic hybrid material, can be grown not only in a designed two-dimensional pattern but also in three-dimensionally ordered ways by using carboxyl-group terminated nanoparticles as a template.

  • PDF

Structural and Molar Mass Characterization of Commercial Aliphatic Hyperbranched Polyesters

  • Zager, Ema;Huskic, Miroslav;Zigon, Majda
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.114-115
    • /
    • 2006
  • We investigated the effects of annealing on the rearrangement of H-bonding structure and its influence on the thermal and rheological properties of $2^{nd}\;and\;4^{th}$ pseudo-generation aliphatic hyperbranched (HB) polyesters based on 2,2-bis(methylol)propionic acid. During annealing of amorphous HB polyesters, the structure becomes more ordered as a consequence of multiple H-bonds formation between linear sequences. Structure ordering is more pronounced for the lower pseudo-generation HB polyester with low molar mass, low degree of branching and incompletely reacted core hydroxyl groups which greatly increases the possibility for multiple H-bond interactions.

  • PDF

Optional Storage of Non-manifold Information for Solid Models (선택 저장을 이용한 복합 다양체 자료구조)

  • 최국헌;한순흥;이현찬
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.150-160
    • /
    • 1997
  • Existing non-manifold data structures which use the ordered topological representation method, are designed based on a "Model" which is the highest topological entity. Their non-manifold information is always included in edges and vertices even if they are in the manifold situation. Thus they require large storage spaces than manifold data structures. The proposed data structure reduces its storage space by removing unnecessary information stored in edges and vertices. Topological information is classified into manifold and non-manifold information. The main non-manifold information is radial cycles and disk cycles. The proposed data structure always stores manifold information. For the non-manifold situation, the edge stores radial cycles, and the vertex stores disk cycles. The storage space can be reduced in the later stage of CAD design when the ratio of non-manifold to manifold entities is small.

  • PDF

Effect of gamma-irradiation on the Physicochemical Properties of Hemoglobin

  • Lee, Seung-hwan;Song, Kyung-Bin
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.135.1-135
    • /
    • 2003
  • To elucidate the effect of gamma-irradiation on the molecular properties of hemoglobin, the secondary, tertiary structure, and the molecular weight size of the protein were examined after irradiation at 0.5, 1, 5, and 10 kGy. Gamma-irradiation of hemoglobin solutions caused the disruption of the ordered structure of the protein molecules, as well as degradation, cross-linking, and aggregation of the polypeptide chains. A SDS-PAGE study indicated that irradiation caused initial fragmentation of the proteins and subsequent aggregation due to cross-linking of the protein molecules. The effect of irradiation on the protein was more significant at lower protein concentrations. Ascorbic acid decreased the degradation and aggregation of proteins by scavenging oxygen radicals that were produced by irradiation. A circular dichroism study showed that irradiation decreased the helical content of hemoglobin with a concurrent increase of the aperiodic structure content. Fluorescence spectroscopy indicated that irradiation decreased the emission intensity that was excited at 280 nm.

  • PDF

A Study of Nanoscale Structure of Anodic Porous Alumina film (다공성 알루미나 박막의 나노 스케일 구조에 관한 연구)

  • 정경한;신훈규;권영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.801-806
    • /
    • 2003
  • In recent years, there has been large interest in the fabrication of the self organized nanoscale structures since not only their potential utilization in electronic, optoelectronic, and magnetic devices but also their fundamental interest such as uniformity and regularization. An attractive candidate of these materials is anodic porous alumina film(Al$_2$O$_3$) which is formed by the anodization of aluminum in an appropriate acid solution. In this study to fabricate the porous alumina film with very uniform and nearly parallel pores the anodization was carried out under constant voltage mode in 0.3M oxalic acid as an electrolyte. The hexagonally ordered arrays with a few $\mu\textrm{m}$ in size two-dimensional polycrystalline structure were obtained of which pore densities were 1.1${\times}$10$\^$10//$\textrm{cm}^2$.

Synthesis and Characterization of New Macroporous SnO2 Foams

  • Choi, Moon-Hyung;Paek, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1388-1390
    • /
    • 2013
  • Macroporous $SnO_2$ foam was successfully synthesized via a simple soft-chemical route by hybridization between alkylamine and tin(IV) oxide. According to X-ray diffraction (XRD) analysis, the as-prepared $SnO_2$ foam had a highly ordered lamella structure along the crystallographic c-axis, which transformed to a rutile phase after thermal treatment at $300^{\circ}C$. X-ray absorption spectroscopy (XAS) at the Sn K-edge revealed that $SnO_2$ particles in the hybrid material maintained their nanosized structure after hybridization with alkylamine. Scanning electron microscope (SEM) images clearly showed that the as-prepared $SnO_2$ foam had a macroporous structure. This synthetic route can be extended to the development of open frameworks with good electrochemical properties in battery applications.