Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00577

Cathodic Electrochemical Deposition of Highly Ordered Mesoporous Manganese Oxide for Supercapacitor Electrodes via Surfactant Templating  

Lim, Dongwook (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Park, Taesoon (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Choi, Yeji (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Oh, Euntaek (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Shim, Snag Eun (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Baeck, Sung-Hyeon (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.2, 2020 , pp. 148-154 More about this Journal
Abstract
Highly ordered mesoporous manganese oxide films were electrodeposited onto indium tin oxide coated (ITO) glass using sodium dodecyl sulfate (SDS) and ethylene glycol (EG) which were used as a templating agent and stabilizer for the formation of micelle, respectively. The manganese oxide films synthesized with surfactant templating exhibited a highly mesoporous structure with a long-range order, which was confirmed by SAXRD and TEM analysis. The unique porous structure offers a more favorable diffusion pathway for electrolyte transportation and excellent ionic conductivity. Among the synthesized samples, Mn2O3-SDS+EG exhibited the best electrochemical performance for a supercapacitor in the wide range of scan rate, which was attributed to the well-developed mesoporous structure. The Mn2O3 prepared with SDS and EG displayed an outstanding capacitance of 72.04 F g-1, which outperform non-porous Mn2O3 (32.13 F g-1) at a scan rate of 10 mV s-1.
Keywords
Electrodeposition; Porous Metal Oxide; Manganese Oxide; Surfactant; Capacitance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359(6397), 710-712.   DOI
2 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science, 1998, 279(5350), 548-552.   DOI
3 M. Su, H. Su, B. Du, X. Li, G. Ren and S. Wang, Korean J. Chem. Eng., 2015, 32(5), 852-859.   DOI
4 K. Miyazawa and S. Inagaki, Chem. Commun., 2000, 21, 2121-2122.   DOI
5 D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka and G. D. Stucky, Adv. Mater., 1998, 10(16), 1380-1385.   DOI
6 J. M. Kim and G. D. Stucky, Chem. Commun., 2000, 13, 1159-1160.
7 F. Schuth, Chem. Mater., 2001, 13(10), 3184-3195.   DOI
8 Y. Wang, C.-M. Yang, W. Schmidt, B. Spliethoff, E. Bill and F. Schuth, Adv. Mater., 2005, 17(1), 53-56.   DOI
9 J. Kibsgaard, A. Jackson and T. F. Jaramillo, Nano Energy, 2016, 29, 243-248.   DOI
10 T. Brezesinski, J. Wang, S. H. Tolbert and B. Dunn, Nat. Mater., 2010, 9(2), 146-151.   DOI
11 H. Liu, P. He, Z. Li, D. Sun, H. Huang, J. Li and G. Zhu, Chem.-Asian J., 2006, 1(5), 701-706.   DOI
12 P. A. Nelson and J. R. Owen, J. Electrochem. Soc., 2003, 150(10), A1313-A1317.   DOI
13 G. Wang, H. Liu, J. Horvat, B. Wang, S. Qiao, J. Park and H. Ahn, Chem.-Eur. J., 2010, 16(36), 11020-11027.   DOI
14 F. Jiao, K. M. Shaju and P. G. Bruce, Angew. Chem. Int. Ed., 2005, 44(40), 6550-6553.   DOI
15 F. Jiao, J. Bao, A. H. Hill and P. G. Bruce, Angew. Chem. Int. Ed., 2008, 47(50), 9711-9716.   DOI
16 Z. Wu and D. Zhao, Chem. Commun., 2011, 47(12), 3332-3338.   DOI
17 W. Shen, X. Dong, Y. Zhu, H. Chen and J. Shi, Microporous Mesoporous Mater., 2005, 85(1-2), 157-162.   DOI
18 J. Chattopadhyay, T. S. Pathak, D. Pak and R. Srivastava, Korean J. Chem. Eng., 2016, 33(5), 1514-1529.   DOI
19 B. Yue, H. Tang, Z. Kong, K. Zhu, C. Dickinson, W. Zhou and H. He, Chem. Phys. Lett., 2005, 407(1-3), 83-86.   DOI
20 K. Zhu, B. Yue, W. Zhou and H. He, Chem. Commun., 2003, 9, 98-99.
21 S. Inagaki, Y. Fukushima and K. Kuroda, J. Chem. Soc. Chem. Commun., 1993, 8, 680-682.
22 P. Shu, J. Ruan, C. Gao, H. Li and S. Che, Microporous Mesoporous Mater., 2009, 123, 314-323.   DOI
23 E. Ramasamy, J. Chun and J. Lee, Carbon, 2010, 48, 4563-4565.   DOI
24 Y. Liu, W. Zhao and X. Zhang, Electrochim. Acta, 2008, 53, 3296-3304.   DOI
25 S.-H. Baeck, K.-S. Choi, T. F. Jaramillo, G. D. Stucky and E. W. McFarland, Adv. Mater., 2003, 15(15), 1269-1273.   DOI
26 S. Hui, Y. Lifu, J. Junqing and L. Yanling, Energy Convers. Manag., 2011, 52(1), 668-674.   DOI
27 G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 2012, 41(2), 797-828.   DOI
28 C. Lei, N. Amini, F. Markoulidis, P. Wilson, S. Tennison and C. Lekakou, J. Mater. Chem. A, 2013, 1(19), 6037-6042.   DOI
29 T. Zhao, H. Jiang and J. Ma, J. Power Sources, 2011, 196(2), 860-864.   DOI
30 H. Chen, L. Hu, M. Chen, Y. Yan and L. Wu, Adv. Funct. Mater., 2014, 24, 934-942.   DOI
31 J.-W. Wang, Y. Chen and B.-Z. Chen, J. Alloys Compd., 2016, 688, 184-197.   DOI
32 N.-L. Wu, Mater. Chem. Phys., 2002, 75(1-3), 6-11.   DOI
33 S. K. Jana, B. Saha, B. Satpati and S. Banerjee, Dalt. Trans., 2015, 44(19), 9158-9169.   DOI
34 C. Natarajan, J. Electrochem. Soc., 1996, 143(5), 1547-1550.   DOI
35 H. Xia, Y. Wan, F. Yan and L. Lu, Mater. Chem. Phys., 2014, 143(2), 720-727.   DOI
36 Y. Tan, S. Srinivasan and K.-S. Choi, J. Am. Chem. Soc., 2005, 127(10), 3596-3604.   DOI
37 Y.-G. Wang, H.-Q. Li and Y.-Y. Xia, Adv. Mater., 2006, 18(19), 2619-2623.   DOI
38 S. Khalid, C. Cao, L. Wang and Y. Zhu, Sci. Rep., 2016, 6, 22699.   DOI